cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 129 results. Next

A337900 The number of walks of length 2n on the square lattice that start from the origin (0,0) and end at the vertex (2,0).

Original entry on oeis.org

1, 16, 225, 3136, 44100, 627264, 9018009, 130873600, 1914762564, 28210561600, 418151049316, 6230734868736, 93271169290000, 1401915345465600, 21147754404155625, 320042195924198400, 4857445984927644900, 73916947787011560000, 1127482124965160372100
Offset: 1

Views

Author

R. J. Mathar, Sep 29 2020

Keywords

Examples

			a(2) = 16 counts the walks RRRL, RRLR, RLRR, LRRR, RRUD, RRDU, RDRU, RURD, RUDR, RDUR, URRD, DRRU, URDR, DRUR, UDRR, DURR of length 4.
		

Crossrefs

Cf. A002894 (at (0,0)), A060150 (at (1,0)), A135389 (at (1,1)), A337901 (at (3,0)), A337902 (at (2,1)).
Cf. A001791.

Programs

  • Maple
    egf := BesselI(0, 2*x)*BesselI(2, 2*x): ser := series(egf, x, 40):
    seq((2*n)!*coeff(ser, x, 2*n), n = 1..19);  # Peter Luschny, Dec 05 2024

Formula

a(n) = [A001791(n)]^2.
G.f.: x*4F3(3/2, 3/2, 2, 2; 1, 3, 3; 16*x).
D-finite with recurrence (n-1)^2*(n+1)^2*a(n) - 4*n^2*(2*n-1)^2*a(n-1) = 0.
a(n) = (2n)!*[x^(2n)] BesselI(0, 2x)*BesselI(2, 2x). - Peter Luschny, Dec 05 2024

A352838 Irregular triangle read by rows: T(n, k) is the number of 2n-step closed walks on the square lattice having algebraic area k; n >= 0, 0 <= k <= floor(n^2/4).

Original entry on oeis.org

1, 4, 28, 4, 232, 72, 12, 2156, 1008, 308, 48, 8, 21944, 13160, 5540, 1560, 420, 80, 20, 240280, 168780, 87192, 33628, 11964, 3636, 1200, 264, 72, 12, 2787320, 2168544, 1291220, 610232, 262612, 101976, 40376, 13720, 4900, 1512, 420, 112, 28
Offset: 0

Views

Author

Andrei Zabolotskii, Apr 05 2022

Keywords

Comments

Rows can be extended to negative k with T(n, -k) = T(n, k). Sums of such extended rows give A002894.
T(n, k) is the number of words of length 2n equal to z^k in the Heisenberg group, presented as , where z=[x,y]. In particular, T(n, 0) = A307468(n).

Examples

			The table begins:
       1
       4
      28,      4
     232,     72,    12
    2156,   1008,   308,    48,     8
   21944,  13160,  5540,  1560,   420,   80,   20
  240280, 168780, 87192, 33628, 11964, 3636, 1200, 264, 72, 12
     ...
T(2, 0) = 28: the 4-step walks enclosing algebraic area 0 include 16 walks of the form "some two steps, then two steps right back" and 12 walks of the form "some step, step back, a different step, step back".
T(2, 1) = 4: the 4-step walks enclosing algebraic area 1 are the walks around each of the 4 squares touching the origin in the positive direction; cf. A334756(2, 1) = 8, which also counts walks around these squares in the negative direction.
		

Crossrefs

Row lengths are A033638 = A002620 + 1.
Row n ends with 4 * A026741(n) for n > 0.
Row 16 is A178106.
A334756 counts self-avoiding walks only.

Programs

  • Mathematica
    z[0, 0, 0, 0] = 1;
    z[-1, ] = z[, -1, _] = z[, , -1, ] = z[, , , -1] = 0;
    z[m1_, m2_, l1_, l2_] := z[m1, m2, l1, l2] = Expand[z[m1, m2, l1 - 1, l2] + z[m1, m2, l1, l2 - 1] + q^(l2 - l1) z[m1 - 1, m2, l1, l2] + q^(l1 - l2) z[m1, m2 - 1, l1, l2]];
    zN[n_] := Sum[z[m, m, n/2 - m, n/2 - m], {m, 0, n/2}];
    walks[n_] := Module[{gf = zN[2 n], e}, e = Exponent[gf, q, Max]; CoefficientList[gf q^e, q][[e + 1 ;;]]];
    Table[walks[n], {n, 0, 8}]

A119245 Triangle, read by rows, defined by: T(n,k) = (4*k+1)*binomial(2*n+1, n-2*k)/(2*n+1) for n >= 2*k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 14, 20, 1, 42, 75, 9, 132, 275, 54, 1, 429, 1001, 273, 13, 1430, 3640, 1260, 104, 1, 4862, 13260, 5508, 663, 17, 16796, 48450, 23256, 3705, 170, 1, 58786, 177650, 95931, 19019, 1309, 21, 208012, 653752, 389367, 92092, 8602, 252, 1
Offset: 0

Views

Author

Paul D. Hanna, May 10 2006

Keywords

Comments

Closely related to triangle A118919.
Row n contains 1+floor(n/2) terms.
From Peter Bala, Mar 20 2009: (Start)
Combinatorial interpretations of T(n,k):
1) The number of standard tableaux of shape (n-2*k,n+2*k).
2) The entries in column k are (with an offset of 2*k) the number of n-th generation vertices in the tree of sequences with unit increase labeled by 4*k. See [Sunik, Theorem 4]. (End)

Examples

			Triangle begins:
     1;
     1;
     2,     1;
     5,     5;
    14,    20,    1;
    42,    75,    9;
   132,   275,   54,   1;
   429,  1001,  273,  13;
  1430,  3640, 1260, 104,  1;
  4862, 13260, 5508, 663, 17; ...
		

Crossrefs

Cf. A119244 (eigenvector), A088218, A000108, A000344, A001392; A118919 (variant), A158483; A002057, A002894.

Programs

  • Mathematica
    f1 = (1-Sqrt[1-4*x])/(2*x);
    DeleteCases[CoefficientList[Normal@Series[f1/(1 - x^2*y*f1^4),{x,0,10},{y,0,5}],{x,y}],0,Infinity]//TableForm  (* Bradley Klee, Feb 26 2018 *)
    Table[(1+4*k)/(n+1+2*k)*Binomial[2*n,n+2*k],{n,0,10},{k,0,Floor[n/2]}]//TableForm (* Bradley Klee, Feb 26 2018 *)
  • PARI
    T(n,k)=(4*k+1)*binomial(2*n+1,n-2*k)/(2*n+1)

Formula

G.f.: A(x,y) = f/(1-x^2*y*f^4), where f=(1-sqrt(1-4*x))/(2*x) is the Catalan g.f. (A000108).
Row sums equal A088218(n) = C(2*n-1,n).
T(n,0) = A000108(n) (the Catalan numbers).
T(n,1) = A000344(n).
T(n,2) = A001392(n).
Sum_{k=0..floor(n/2)} k*T(n,k) = A000346(n-2).
Eigenvector is defined by: A119244(n) = Sum_{k=0..[n\2]} T(n,k)*A119244(k).
...
T(n,k) = (4*k+1)/(n+2*k+1)*binomial(2*n,n+2*k). Compare with A158483. - Peter Bala, Mar 20 2009
T(n,k) = A039599(n, 2*k). - Johannes W. Meijer, Sep 04 2013
A002894(n) = Sum_{k=0..floor(n/2)} (binomial(2k,k)^2)*(4^(n-2*k))*T(n,k). - Bradley Klee, Feb 26 2018

A186416 a(n) = binomial(2n,n)^4/(n+1)^3.

Original entry on oeis.org

1, 2, 48, 2500, 192080, 18670176, 2125170432, 270968717448, 37634544090000, 5588044012339360, 875419364366134016, 143310129125665075392, 24338673855047938317568, 4264316875814353400000000, 767401591466550107174400000, 141345980472409642279275210000, 26569505644587874058090478570000
Offset: 0

Views

Author

Emanuele Munarini, Feb 21 2011

Keywords

Crossrefs

Programs

  • Maple
    A186416 := proc(n) binomial(2*n,n)^4/(n+1)^3 ; end proc: # R. J. Mathar, Feb 23 2011
  • Mathematica
    Table[Binomial[2n,n]^4/(n+1)^3,{n,0,40}]
  • Maxima
    makelist(binomial(2*n,n)^4/(n+1)^3,n,0,40);

Formula

G.f.: 4F3(1/2,1/2,1/2,1/2;2,2,2;256*x), where nFm(...;..;.) denotes a generalized hypergeometric series.
a(n) = (A000108(n))^3*A000984(n). - R. J. Mathar, Feb 23 2011

A248586 a(n) = Sum_{i=0..n} C(n,i)*C(2i,i)^2.

Original entry on oeis.org

1, 5, 45, 521, 6733, 92385, 1316865, 19274925, 287694285, 4359037985, 66837293545, 1034774126325, 16149186405025, 253737607849445, 4009771017244485, 63681603585696321, 1015763347140335565, 16264070907887454465
Offset: 0

Views

Author

R. J. Mathar, Oct 09 2014

Keywords

Crossrefs

Cf. A002894 (inverse binomial transform), A002893.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Binomial[2k, k]^2, {k, 0, n}],{n,0,100}] (* Emanuele Munarini, Oct 28 2016 *)
  • Maxima
    makelist(sum(binomial(n,k)*binomial(2*k,k)^2,k,0,n),n,0,12); /* Emanuele Munarini, Oct 28 2016 */
  • PARI
    a(n) = sum(i=0, n, binomial(n,i)*binomial(2*i,i)^2); \\ Michel Marcus, Oct 09 2014
    

Formula

a(n) = Sum_{i=0..n} A007318(n,i)*A002894(i).
Conjecture: n^2*a(n) +(-19*n^2+19*n-5)*a(n-1) +35*(n-1)^2*a(n-2) -17*(n-1)*(n-2)*a(n-3)=0.
G.f.: LegendreP(-1/2, (1+15x)/(1-17x)) /[sqrt(1-17x)*sqrt(1-x)]. [Corrected by Robert Israel, Oct 28 2016]
From Emanuele Munarini, Oct 28 2016: (Start)
a(n) = hypergeometric(1/2,1/2,-n;1,1;-16).
G.f.: A(t) = (2/Pi)*(ellipticK(16*t/(1-t))/(1-t)).
Diff. eq. satisfied by the g.f.: t*(1-t)*(1-18*t+17*t^2)*A''(t)+(1-t)*(1-37*t+68*t^2)*A'(t)-(34*t^2-35*t+5)*A(t)=0.
Remark: the conjectured recurrence for the coefficients a(n) comes from this diff. eq. for A(t).
(End)
a(n) ~ 17^(n+1)/(16*Pi*n). - Vaclav Kotesovec, Oct 30 2016

A268147 A double binomial sum involving absolute values.

Original entry on oeis.org

0, 16, 512, 12288, 262144, 5242880, 100663296, 1879048192, 34359738368, 618475290624, 10995116277760, 193514046488576, 3377699720527872, 58546795155816448, 1008806316530991104, 17293822569102704640, 295147905179352825856, 5017514388048998039552
Offset: 0

Views

Author

Richard P. Brent, Jan 27 2016

Keywords

Comments

A fast algorithm follows from Theorem 1 of Brent et al. article.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          16*`if`(n<2, n, n*a(n-1)/(n-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 29 2016
  • Mathematica
    Table[n*16^n, {n, 0, 20}] (* Jean-François Alcover, Oct 24 2016 *)
    LinearRecurrence[{32,-256},{0,16},20] (* Harvey P. Dale, Jul 19 2018 *)
  • PARI
    a(n) = sum(k=-n,n, sum(l=-n,n,binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^2));
    
  • PARI
    concat(0, Vec(16*x/(1-16*x)^2 + O(x^20))) \\ Colin Barker, Feb 11 2016
    
  • PARI
    a(n)=n*16^n \\ Charles R Greathouse IV, May 10 2016

Formula

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^2).
From Colin Barker, Feb 11 2016: (Start)
a(n) = n*16^n.
a(n) = 32*a(n-1)-256*a(n-2) for n>1.
G.f.: 16*x / (1-16*x)^2.
(End)

A275653 a(n) = binomial(4*n,2*n)*binomial(3*n,2*n).

Original entry on oeis.org

1, 18, 1050, 77616, 6370650, 554822268, 50199951984, 4664758248000, 442077195513690, 42533571002422500, 4141601026094832300, 407220411993767798400, 40363606408574136870000, 4028061310168832261158176, 404311537318239680601595200, 40785601782042745410592271616
Offset: 0

Views

Author

Peter Bala, Aug 04 2016

Keywords

Comments

Right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^(n+k)*binomial(4*n + k,4*n - k)*binomial(2*k,k)* binomial(2*n - k,n) = binomial(4*n,2*n)* binomial(3*n,2*n).
We also have Sum_{k = 0..4*n} (-1)^(n+k)*binomial(4*n + k,4*n - k)*binomial(2*k,k)*binomial(2*n - k,n) = binomial(4*n,2*n)* binomial(3*n,2*n).
Compare with the identities
Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n + k,2*n - k)* binomial(2*k,k)*binomial(2*n - k,n) = binomial(2*n,n)^2 = A002894(n).
Sum_{k = 0..n} (-1)^(n+k)*binomial(6*n + k,6*n - k)* binomial(2*k,k)*binomial(2*n - k,n) = binomial(6*n,3*n)* binomial(2*n,n) = A275655(n)
Sum_{k = 0..n} (-1)^(n+k)*binomial(8*n + k,8*n - k)* binomial(2*k,k)*binomial(2*n - k,n) = binomial(8*n,4*n)* binomial(5*n,2*n)*binomial(2*n,n)/binomial(6*n,3*n).
See also A275652, A275654 and A275655.

Crossrefs

Programs

  • Maple
    seq((4*n)!*(3*n)!/(n!*(2*n)!^3), n = 0..20);
  • Mathematica
    Table[Binomial[4 n, 2 n] Binomial[3 n, 2 n], {n, 0, 15}] (* Michael De Vlieger, Aug 07 2016 *)

Formula

a(n) = (4*n)!*(3*n)!/(n!*(2*n)!^3).
a(n) = A001448(n) * A005809(n).
Recurrence: a(n) = 3*(3*n - 1)*(3*n - 2)*(4*n - 1)*(4*n - 3)/(n^2*(2*n - 1)^2) * a(n-1).
a(n) = [x^n] ((1 + x)^2/(1 - x))^(2*n) * [x^n] (1 + x)^(3*n) = [x^n] G(x)^(6*n) where G(x) = 1 + 3*x + 38*x^2 + 1150*x^3 + 47099^x^4 + 2264968*x^5 + 120311611*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^6, where F(x) = 1 + 3*x + 92*x^2 + 4579*x^3 + 282605*x^4 + 19698991*x^5 + 1484923315*x^6 + ... appears to have integer coefficients.
a(n) ~ sqrt(3/2)*108^n/(2*Pi*n). - Ilya Gutkovskiy, Aug 07 2016
From Peter Bala, Mar 23 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(3*n-k-1,n-k)*binomial(4*n,k)^2.
a(n) = [x^n] (1 - x)^(2*n) * P(4*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A275652.
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k. (End)

A275655 a(n) = binomial(6*n,3*n)*binomial(2*n,n).

Original entry on oeis.org

1, 40, 5544, 972400, 189290920, 39089615040, 8385425017200, 1847301025078080, 415026659401497000, 94660194875011205440, 21850091031597537252544, 5092815839064962373499680, 1196622940864849837505171824, 283073284848591452381449360000
Offset: 0

Views

Author

Peter Bala, Aug 04 2016

Keywords

Comments

Right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^(n+k)*binomial(6*n + k,6*n - k)*binomial(2*k,k) *binomial(2*n - k,n) = binomial(6*n,3*n)*binomial(2*n,n).
We also note that Sum_{k = 0..6*n} (-1)^(n+k)*binomial(6*n + k,6*n - k)*binomial(2*k,k)*binomial(2*n - k,n) = binomial(6*n,3*n)*binomial(2*n,n).
Compare with Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n + k,2*n - k)*binomial(2*k, k)*binomial(2*n - k,n) = binomial(2*n,n)^2 = A002894(n). See also A275652, A275653 and A275654.

Crossrefs

Programs

  • Maple
    seq((6*n)!*(2*n)!/((3*n)!*n!)^2, n = 0..20);
  • Mathematica
    Table[Binomial[6 n, 3 n] Binomial[2 n, n], {n, 0, 13}] (* Michael De Vlieger, Aug 07 2016 *)

Formula

a(n) = (6*n)!*(2*n)!/((3*n)!*n!)^2.
a(n) = A066802(n) * A000984(n).
Recurrence: a(n) = 16*(2*n - 1)^2*(6*n - 1)*(6*n - 5)/(n^2*(3*n - 1)*(3*n - 2)) * a(n-1).
a(n) = [x^(3*n)] (1 + x)^(6*n) * [x^n] (1 + x)^(2*n) = [x^n] G(x)^(8*n) where G(x) = 1 + 5*x + 159*x^2 + 11690*x^3 + 1160817*x^4 + 135123516*x^5 + 17357714116*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^8, where F(x) = 1 + 5*x + 359*x^2 + 42270*x^3 + 6182313*x^4 + 1021669966*x^5 + 182605696304*x^6 + ... appears to have integer coefficients.
a(n) ~ 256^n/(sqrt(3)*Pi*n). - Ilya Gutkovskiy, Aug 07 2016
From Peter Bala, Mar 23 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(5*n-k-1,n-k)*binomial(6*n,k)^2.
a(n) = [x^n] (1 - x)^(2*n) * P(6*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A275652.
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k. (End)

A306641 A(n,k) = Sum_{j=0..n} (k*n)!/(j! * (n-j)!)^k, square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 4, 4, 1, 12, 36, 8, 5, 1, 48, 900, 400, 16, 6, 1, 240, 45360, 94080, 4900, 32, 7, 1, 1440, 3855600, 60614400, 11988900, 63504, 64, 8, 1, 10080, 493970400, 82065984000, 114144030000, 1704214512, 853776, 128, 9
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2019

Keywords

Comments

Columns are the number of maximal chains to multiples of J in the graded poset of (2 X n) antimagic squares. See Stanley. - Arnav Krishna, Jan 13 2023

Examples

			Square array begins:
   1,  1,     1,          1,               1, ...
   2,  2,     4,         12,              48, ...
   3,  4,    36,        900,           45360, ...
   4,  8,   400,      94080,        60614400, ...
   5, 16,  4900,   11988900,    114144030000, ...
   6, 32, 63504, 1704214512, 249344297250048, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol I, Exercise 53, p. 540.

Crossrefs

Columns 0-3 give A000027(n+1), A000079, A002894, A306642, A345646.
Rows 0-1 give A000012, A208529(n+2).
Main diagonal gives A306644.

A337902 The number of walks of length 2n+1 on the square lattice that start from the origin (0,0) and end at the vertex (2,1).

Original entry on oeis.org

3, 50, 735, 10584, 152460, 2208492, 32207175, 472780880, 6982113996, 103673813880, 1546866469148, 23179817220000, 348690679038000, 5263441096145400, 79698007774092375, 1210159553338375200, 18422202264818467500, 281089726445607849000
Offset: 1

Views

Author

R. J. Mathar, Sep 29 2020

Keywords

Examples

			a(1)=3 represents 3 walks of length 3: RRU, URR and RUR.
		

Crossrefs

Cf. A002894 (at (0,0)), A060150 (at (1,0)), A135389 (at (1,1)), A337900 (at (2,0)), A337901 (at (3,0))

Formula

a(n) = binomial(2*n+1,n-1)*binomial(2*n+1,n) = A002054(n)*A001700(n).
G.f.: 3*x*3F2(2,5/2,5/2; 3,4; 16*x).
D-finite with recurrence (n-1)*(n+2)*(n+1)*a(n) -4*n*(2*n+1)^2*a(n-1)=0.
A135389(n) = 2*A060150(n+1) +2*a(n).
Previous Showing 61-70 of 129 results. Next