A337900
The number of walks of length 2n on the square lattice that start from the origin (0,0) and end at the vertex (2,0).
Original entry on oeis.org
1, 16, 225, 3136, 44100, 627264, 9018009, 130873600, 1914762564, 28210561600, 418151049316, 6230734868736, 93271169290000, 1401915345465600, 21147754404155625, 320042195924198400, 4857445984927644900, 73916947787011560000, 1127482124965160372100
Offset: 1
a(2) = 16 counts the walks RRRL, RRLR, RLRR, LRRR, RRUD, RRDU, RDRU, RURD, RUDR, RDUR, URRD, DRRU, URDR, DRUR, UDRR, DURR of length 4.
-
egf := BesselI(0, 2*x)*BesselI(2, 2*x): ser := series(egf, x, 40):
seq((2*n)!*coeff(ser, x, 2*n), n = 1..19); # Peter Luschny, Dec 05 2024
A352838
Irregular triangle read by rows: T(n, k) is the number of 2n-step closed walks on the square lattice having algebraic area k; n >= 0, 0 <= k <= floor(n^2/4).
Original entry on oeis.org
1, 4, 28, 4, 232, 72, 12, 2156, 1008, 308, 48, 8, 21944, 13160, 5540, 1560, 420, 80, 20, 240280, 168780, 87192, 33628, 11964, 3636, 1200, 264, 72, 12, 2787320, 2168544, 1291220, 610232, 262612, 101976, 40376, 13720, 4900, 1512, 420, 112, 28
Offset: 0
The table begins:
1
4
28, 4
232, 72, 12
2156, 1008, 308, 48, 8
21944, 13160, 5540, 1560, 420, 80, 20
240280, 168780, 87192, 33628, 11964, 3636, 1200, 264, 72, 12
...
T(2, 0) = 28: the 4-step walks enclosing algebraic area 0 include 16 walks of the form "some two steps, then two steps right back" and 12 walks of the form "some step, step back, a different step, step back".
T(2, 1) = 4: the 4-step walks enclosing algebraic area 1 are the walks around each of the 4 squares touching the origin in the positive direction; cf. A334756(2, 1) = 8, which also counts walks around these squares in the negative direction.
- Andrei Zabolotskii, Table of n, a(n) for n = 0..1403 (rows 0..25)
- Cédric Béguin, Alain Valette and Andrzej Zuk, On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator, Journal of Geometry and Physics, 21 (1997), 337-356.
- Li Gan, Algebraic Area of Lattice Random Walks and Exclusion Statistics, PhD thesis, Université Paris-Saclay, 2023. See Section 2.1.2, in particular Table 2.1 (divide terms in rows with nonzero A by 2 to get this table).
- Stefan Mashkevich and Stéphane Ouvry, Area Distribution of Two-Dimensional Random Walks on a Square Lattice, J. Stat. Phys., 137 (2009), 71-78.
- Morteza Mohammad-Noori, Enumeration of closed random walks in the square lattice according to their areas, arXiv:1012.3720 [math.CO], 2010. Published as: Morteza Mohammad-Noori, Enumeration of walks in the square lattice according to their areas, Journal of Combinatorial Mathematics and Combinatorial Computing, 91 (2014), 257-274.
Row n ends with 4 *
A026741(n) for n > 0.
A334756 counts self-avoiding walks only.
-
z[0, 0, 0, 0] = 1;
z[-1, ] = z[, -1, _] = z[, , -1, ] = z[, , , -1] = 0;
z[m1_, m2_, l1_, l2_] := z[m1, m2, l1, l2] = Expand[z[m1, m2, l1 - 1, l2] + z[m1, m2, l1, l2 - 1] + q^(l2 - l1) z[m1 - 1, m2, l1, l2] + q^(l1 - l2) z[m1, m2 - 1, l1, l2]];
zN[n_] := Sum[z[m, m, n/2 - m, n/2 - m], {m, 0, n/2}];
walks[n_] := Module[{gf = zN[2 n], e}, e = Exponent[gf, q, Max]; CoefficientList[gf q^e, q][[e + 1 ;;]]];
Table[walks[n], {n, 0, 8}]
A119245
Triangle, read by rows, defined by: T(n,k) = (4*k+1)*binomial(2*n+1, n-2*k)/(2*n+1) for n >= 2*k >= 0.
Original entry on oeis.org
1, 1, 2, 1, 5, 5, 14, 20, 1, 42, 75, 9, 132, 275, 54, 1, 429, 1001, 273, 13, 1430, 3640, 1260, 104, 1, 4862, 13260, 5508, 663, 17, 16796, 48450, 23256, 3705, 170, 1, 58786, 177650, 95931, 19019, 1309, 21, 208012, 653752, 389367, 92092, 8602, 252, 1
Offset: 0
Triangle begins:
1;
1;
2, 1;
5, 5;
14, 20, 1;
42, 75, 9;
132, 275, 54, 1;
429, 1001, 273, 13;
1430, 3640, 1260, 104, 1;
4862, 13260, 5508, 663, 17; ...
-
f1 = (1-Sqrt[1-4*x])/(2*x);
DeleteCases[CoefficientList[Normal@Series[f1/(1 - x^2*y*f1^4),{x,0,10},{y,0,5}],{x,y}],0,Infinity]//TableForm (* Bradley Klee, Feb 26 2018 *)
Table[(1+4*k)/(n+1+2*k)*Binomial[2*n,n+2*k],{n,0,10},{k,0,Floor[n/2]}]//TableForm (* Bradley Klee, Feb 26 2018 *)
-
T(n,k)=(4*k+1)*binomial(2*n+1,n-2*k)/(2*n+1)
A186416
a(n) = binomial(2n,n)^4/(n+1)^3.
Original entry on oeis.org
1, 2, 48, 2500, 192080, 18670176, 2125170432, 270968717448, 37634544090000, 5588044012339360, 875419364366134016, 143310129125665075392, 24338673855047938317568, 4264316875814353400000000, 767401591466550107174400000, 141345980472409642279275210000, 26569505644587874058090478570000
Offset: 0
-
A186416 := proc(n) binomial(2*n,n)^4/(n+1)^3 ; end proc: # R. J. Mathar, Feb 23 2011
-
Table[Binomial[2n,n]^4/(n+1)^3,{n,0,40}]
-
makelist(binomial(2*n,n)^4/(n+1)^3,n,0,40);
A248586
a(n) = Sum_{i=0..n} C(n,i)*C(2i,i)^2.
Original entry on oeis.org
1, 5, 45, 521, 6733, 92385, 1316865, 19274925, 287694285, 4359037985, 66837293545, 1034774126325, 16149186405025, 253737607849445, 4009771017244485, 63681603585696321, 1015763347140335565, 16264070907887454465
Offset: 0
-
Table[Sum[Binomial[n, k] Binomial[2k, k]^2, {k, 0, n}],{n,0,100}] (* Emanuele Munarini, Oct 28 2016 *)
-
makelist(sum(binomial(n,k)*binomial(2*k,k)^2,k,0,n),n,0,12); /* Emanuele Munarini, Oct 28 2016 */
-
a(n) = sum(i=0, n, binomial(n,i)*binomial(2*i,i)^2); \\ Michel Marcus, Oct 09 2014
A268147
A double binomial sum involving absolute values.
Original entry on oeis.org
0, 16, 512, 12288, 262144, 5242880, 100663296, 1879048192, 34359738368, 618475290624, 10995116277760, 193514046488576, 3377699720527872, 58546795155816448, 1008806316530991104, 17293822569102704640, 295147905179352825856, 5017514388048998039552
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..800
- Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477v2 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (32,-256).
-
a:= proc(n) option remember;
16*`if`(n<2, n, n*a(n-1)/(n-1))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jan 29 2016
-
Table[n*16^n, {n, 0, 20}] (* Jean-François Alcover, Oct 24 2016 *)
LinearRecurrence[{32,-256},{0,16},20] (* Harvey P. Dale, Jul 19 2018 *)
-
a(n) = sum(k=-n,n, sum(l=-n,n,binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^2));
-
concat(0, Vec(16*x/(1-16*x)^2 + O(x^20))) \\ Colin Barker, Feb 11 2016
-
a(n)=n*16^n \\ Charles R Greathouse IV, May 10 2016
A275653
a(n) = binomial(4*n,2*n)*binomial(3*n,2*n).
Original entry on oeis.org
1, 18, 1050, 77616, 6370650, 554822268, 50199951984, 4664758248000, 442077195513690, 42533571002422500, 4141601026094832300, 407220411993767798400, 40363606408574136870000, 4028061310168832261158176, 404311537318239680601595200, 40785601782042745410592271616
Offset: 0
-
seq((4*n)!*(3*n)!/(n!*(2*n)!^3), n = 0..20);
-
Table[Binomial[4 n, 2 n] Binomial[3 n, 2 n], {n, 0, 15}] (* Michael De Vlieger, Aug 07 2016 *)
A275655
a(n) = binomial(6*n,3*n)*binomial(2*n,n).
Original entry on oeis.org
1, 40, 5544, 972400, 189290920, 39089615040, 8385425017200, 1847301025078080, 415026659401497000, 94660194875011205440, 21850091031597537252544, 5092815839064962373499680, 1196622940864849837505171824, 283073284848591452381449360000
Offset: 0
-
seq((6*n)!*(2*n)!/((3*n)!*n!)^2, n = 0..20);
-
Table[Binomial[6 n, 3 n] Binomial[2 n, n], {n, 0, 13}] (* Michael De Vlieger, Aug 07 2016 *)
A306641
A(n,k) = Sum_{j=0..n} (k*n)!/(j! * (n-j)!)^k, square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 4, 4, 4, 1, 12, 36, 8, 5, 1, 48, 900, 400, 16, 6, 1, 240, 45360, 94080, 4900, 32, 7, 1, 1440, 3855600, 60614400, 11988900, 63504, 64, 8, 1, 10080, 493970400, 82065984000, 114144030000, 1704214512, 853776, 128, 9
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
2, 2, 4, 12, 48, ...
3, 4, 36, 900, 45360, ...
4, 8, 400, 94080, 60614400, ...
5, 16, 4900, 11988900, 114144030000, ...
6, 32, 63504, 1704214512, 249344297250048, ...
- R. P. Stanley, Enumerative Combinatorics, Vol I, Exercise 53, p. 540.
A337902
The number of walks of length 2n+1 on the square lattice that start from the origin (0,0) and end at the vertex (2,1).
Original entry on oeis.org
3, 50, 735, 10584, 152460, 2208492, 32207175, 472780880, 6982113996, 103673813880, 1546866469148, 23179817220000, 348690679038000, 5263441096145400, 79698007774092375, 1210159553338375200, 18422202264818467500, 281089726445607849000
Offset: 1
a(1)=3 represents 3 walks of length 3: RRU, URR and RUR.
Comments