cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 92 results. Next

A015876 Numbers k such that sigma(k) = sigma(k+8).

Original entry on oeis.org

15, 69, 87, 102, 132, 175, 230, 638, 689, 1127, 1349, 1392, 2006, 5170, 6680, 8366, 8390, 11652, 11918, 12128, 16748, 19511, 19829, 23318, 24597, 24734, 25122, 27162, 28676, 30730, 32864, 37391, 37436, 37901, 41082, 45925, 47487
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015877 Numbers k such that sigma(k) = sigma(k+9).

Original entry on oeis.org

14, 16, 46, 446, 1146, 26766, 35805, 143605, 179086, 185946, 437745, 1187725, 1194646, 1327086, 1746946, 2201806, 2893605, 3003385, 3574725, 3730125, 4053586, 4928385, 5715325, 6220305, 7507946, 9423645, 9897186
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015880 Numbers k such that sigma(k) = sigma(k+10).

Original entry on oeis.org

21, 174, 270, 517, 572, 913, 992, 1002, 1420, 1633, 1830, 2622, 2958, 4170, 4747, 5539, 7520, 7544, 7729, 10184, 10783, 14863, 16165, 16520, 19837, 20935, 21584, 23161, 26840, 28544, 29737, 31453, 34510, 35571, 35611, 35845, 39560
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015881 Numbers k such that sigma(k) = sigma(k+11).

Original entry on oeis.org

28, 154, 466, 874, 958, 1054, 2266, 2878, 11505, 12754, 14674, 17974, 21154, 21778, 29223, 29535, 31725, 32714, 39658, 43186, 48004, 52018, 62338, 70198, 126795, 132783, 163251, 164818, 207603, 212938, 221595, 272685, 274527
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015882 Numbers k such that sigma(k) = sigma(k+12).

Original entry on oeis.org

35, 104, 285, 287, 310, 329, 340, 345, 406, 609, 660, 736, 767, 957, 1067, 1207, 1242, 1768, 1786, 1817, 1824, 2047, 2288, 2407, 2672, 2686, 2714, 3009, 4012, 4387, 4653, 4847, 6179, 7532, 8366, 8920, 10005, 10528, 11140, 11670, 11951
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015883 Numbers k such that sigma(k) = sigma(k+13).

Original entry on oeis.org

182, 782, 1965, 2486, 2678, 2685, 12141, 12441, 17342, 21242, 27686, 34905, 35505, 35853, 38662, 38985, 56732, 63578, 104342, 109461, 192933, 198909, 222122, 236966, 245349, 251654, 256322, 261885, 262238, 324441, 333909
Offset: 1

Views

Author

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 182, p. 56, Ellipses, Paris 2008.

Crossrefs

Programs

Extensions

Corrected by T. D. Noe, Oct 31 2006

A054004 Numbers k such that k and k+1 have the same number and sum of divisors.

Original entry on oeis.org

14, 1334, 1634, 2685, 33998, 42818, 64665, 84134, 109214, 122073, 166934, 289454, 383594, 440013, 544334, 605985, 649154, 655005, 792855, 1642154, 2284814, 2305557, 2913105, 3571905, 3682622, 4701537, 5181045, 6431732
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			Divisors of 14 = {1, 2, 7, 14}, divisors of 15 = {1, 3, 5, 15}, both have four divisors and sum = 24.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], DivisorSigma[0, #] == DivisorSigma[0, # + 1] && DivisorSigma[1, #] == DivisorSigma[1, # + 1] &] (* Jayanta Basu, Mar 20 2013 *)

Extensions

More terms from Jud McCranie, Jun 02 2000

A181647 Numbers m having the same sum of divisors as m+20 has.

Original entry on oeis.org

42, 51, 123, 141, 204, 371, 497, 708, 923, 992, 1034, 1343, 1391, 1484, 1595, 1691, 1826, 3266, 3317, 5015, 5152, 7367, 8003, 9132, 9287, 9494, 11078, 13223, 15458, 15833, 17975, 18752, 19428, 20120, 20915, 21251, 21566, 24119, 24503, 25787, 28000, 29726, 29795
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 03 2010

Keywords

Examples

			a(1) = 42, divisors(42) = {1,2,3,6,7,14,21,42}, divisors(42+20) = {1,2,31,62}: 1+2+3+6+7+14+21+42 = 1+2+31+62.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 16.

Crossrefs

Programs

  • Mathematica
    Select[Range[30000], Equal @@ DivisorSigma[1, # + {0, 20}] &] (* Amiram Eldar, Apr 16 2025 *)
  • PARI
    isok(n) = sigma(n) == sigma(n+20); \\ Michel Marcus, Feb 06 2016

Formula

A000203(a(n)) = A000203(a(n) + 20).

A340793 Sequence whose partial sums give A000203.

Original entry on oeis.org

1, 2, 1, 3, -1, 6, -4, 7, -2, 5, -6, 16, -14, 10, 0, 7, -13, 21, -19, 22, -10, 4, -12, 36, -29, 11, -2, 16, -26, 42, -40, 31, -15, 6, -6, 43, -53, 22, -4, 34, -48, 54, -52, 40, -6, -6, -24, 76, -67, 36, -21, 26, -44, 66, -48, 48, -40, 10, -30, 108, -106, 34, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 21 2021

Keywords

Comments

Essentially a duplicate of A053222.
Convolved with the nonzero terms of A000217 gives A175254, the volume of the stepped pyramid described in A245092.
Convolved with the nonzero terms of A046092 gives A244050, the volume of the stepped pyramid described in A244050.
Convolved with A000027 gives A024916.
Convolved with A000041 gives A138879.
Convolved with A000070 gives the nonzero terms of A066186.
Convolved with the nonzero terms of A002088 gives A086733.
Convolved with A014153 gives A182738.
Convolved with A024916 gives A000385.
Convolved with A036469 gives the nonzero terms of A277029.
Convolved with A091360 gives A276432.
Convolved with A143128 gives the nonzero terms of A000441.
For the correspondence between divisors and partitions see A336811.

Crossrefs

Programs

  • Maple
    a:= n-> (s-> s(n)-s(n-1))(numtheory[sigma]):
    seq(a(n), n=1..77);  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    Join[{1}, Differences @ Table[DivisorSigma[1, n], {n, 1, 100}]] (* Amiram Eldar, Jan 21 2021 *)
  • PARI
    a(n) = if (n==1, 1, sigma(n)-sigma(n-1)); \\ Michel Marcus, Jan 22 2021

Formula

a(n) = A053222(n-1) for n>1. - Michel Marcus, Jan 22 2021

A053249 Number of divisors of n such that n and n+1 have the same sum of divisors.

Original entry on oeis.org

4, 4, 8, 8, 12, 8, 8, 4, 6, 12, 10, 4, 16, 12, 8, 8, 8, 12, 16, 8, 8, 16, 16, 16, 16, 8, 16, 8, 16, 4, 16, 16, 16, 12, 24, 12, 16, 8, 16, 16, 8, 16, 16, 12, 16, 16, 16, 16, 12, 12, 12, 16, 16, 40, 16, 16, 32, 12, 24, 32, 24, 16, 16, 24, 24, 4, 24, 16, 64, 24, 16, 8, 16, 16, 16, 24, 32, 32, 20, 16
Offset: 1

Views

Author

Asher Auel, Jan 11 2000

Keywords

Crossrefs

Programs

  • Magma
    [#Divisors(n):n in [1..4000000]| SumOfDivisors(n) eq SumOfDivisors(n+1)]; // Marius A. Burtea, Sep 07 2019
  • Mathematica
    Reap[ Do[ If[ DivisorSigma[1, n] == DivisorSigma[1, n + 1], tau = DivisorSigma[0, n]; Print[{n, tau}]; Sow[tau]], {n, 1, 4*10^6}]][[2, 1]] (* Jean-François Alcover, Oct 08 2012 *)
    DivisorSigma[0,#]&/@Flatten[Position[Partition[DivisorSigma[1,Range[ 4000000]],2,1], ?(First[#] == Last[#]&),{1},Heads->False]] (* _Harvey P. Dale, Jul 04 2014 *)
    DivisorSigma[0,#]&/@(SequencePosition[DivisorSigma[1,Range[4000000]],{x_,x_}][[All,1]]) (* Requires Mathematica version 10 or later *)  (* Harvey P. Dale, Jul 25 2019 *)
  • PARI
    do(lim)=my(v=List(),k=1,t); for(n=2,lim, t=sigma(n); if(t==k, listput(v, numdiv(n-1))); k=t); Vec(v) \\ Charles R Greathouse IV, Feb 08 2017
    

Formula

a(n) = tau(A002961(n)).

Extensions

More terms from Naohiro Nomoto, Mar 16 2001
Previous Showing 11-20 of 92 results. Next