cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 55 results. Next

A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 375, 512, 576, 648, 729, 750, 1024, 1152, 1296, 1458, 1500, 2048, 2304, 2592, 2916, 3000, 3375, 4096, 4608, 5184, 5832, 6000, 6561, 6750, 8192, 9216, 10368, 11664, 12000, 13122, 13500
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
      9: {2,2}
     16: {1,1,1,1}
     18: {1,2,2}
     32: {1,1,1,1,1}
     36: {1,1,2,2}
     64: {1,1,1,1,1,1}
     72: {1,1,1,2,2}
     81: {2,2,2,2}
    128: {1,1,1,1,1,1,1}
    144: {1,1,1,1,2,2}
    162: {1,2,2,2,2}
    256: {1,1,1,1,1,1,1,1}
    288: {1,1,1,1,1,2,2}
    324: {1,1,2,2,2,2}
    375: {2,3,3,3}
    512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A325624 a(n) = prime(n)^(n!).

Original entry on oeis.org

2, 9, 15625, 191581231380566414401, 92709068817830061978520606494193845859707401497097037749844778027824097442147966967457359038488841338006006032592594389655201
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A subsequence of A325619 (numbers whose prime indices have reciprocal factorial sum equal to 1).

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325619.

Programs

  • Mathematica
    Table[Prime[n]^n!,{n,5}]

A003167 Number of n-dimensional cuboids with integral edge lengths for which volume = surface area.

Original entry on oeis.org

2, 10, 108, 2892, 270332
Offset: 2

Views

Author

mjzerger(AT)adams.edu

Keywords

Comments

For n>1 it is always true that a(n) > 0 because for dimension n we always have the n-dimensional cuboid with all edge lengths = 2n = A062971(n) having hypervolume (2n)^n equal to "surface hyper-area". - Jonathan Vos Post, Mar 15 2006
Number of nondecreasing tuples (x_1, x_2, ..., x_n) such that 1/2 = 1/x_1 + 1/x_2 + ... + 1/x_n. - Lewis Chen, Dec 20 2019

Examples

			From _Joseph Myers_, Feb 24 2004: (Start)
For n=2 the cuboids are 3 X 6 and 4 X 4.
For n=3 the cuboids are 3 X 7 X 42, 3 X 8 X 24, 3 X 9 X 18, 3 X 10 X 15, 3 X 12 X 12, 4 X 5 X 20, 4 X 6 X 12, 4 X 8 X 8, 5 X 5 X 10, 6 X 6 X 6. (End)
For n=4 see the Marcus link.
		

Crossrefs

Cf. A002966.

Extensions

a(5)-a(6) from Joseph Myers, Feb 24 2004

A115855 Number of partitions of 1 into fractions i/j with 1<=i

Original entry on oeis.org

0, 1, 3, 6, 12, 21, 35, 58, 106, 188, 243, 493, 593, 1062, 3275, 5507, 5803, 12426, 12915, 42410, 131772, 167587, 168841, 428012, 839367, 1015501, 1968161, 5787286, 5791850, 15163758, 15170599, 28838712, 75983559, 82753547, 486356262, 1158442726, 1158464362
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 01 2006

Keywords

Examples

			a(4) = #{1/2+1/2, 1/2+1/4+1/4, 1/3+2/3, 1/3+1/3+1/3, 1/4+3/4, 1/4+1/4+1/4+1/4} = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ Select[Flatten[Map[IntegerPartitions[1, {#}, Rest@ Union[Flatten@ TensorProduct[#, 1/#] &@ Range@ n /. {Integer -> 0, k /; k > 1 -> 0}]] &, Range@ n], 1], Total@ # == 1 &], {n, 25}] (* Michael De Vlieger, Jul 15 2016 *) (* or *)
    a[n_] := Sum[ Length@ IntegerPartitions[1, {k}, Union@ Flatten[ Table[i/j, {j, n}, {i, j-1}]]], {k, n}]; Array[a, 20] (* Giovanni Resta, Jun 15 2017 *)

Formula

A115856(n) = a(n+1) - a(n).

Extensions

a(21)-a(28) from Michael De Vlieger, Jul 15 2016
More terms from Jinyuan Wang, Dec 11 2024

A227611 Number of ways 2/n can be expressed as the sum of three distinct unit fractions: 2/n = 1/x + 1/y + 1/z with 0 < x < y < z.

Original entry on oeis.org

0, 1, 5, 6, 9, 15, 14, 22, 21, 30, 22, 45, 17, 36, 72, 62, 22, 69, 29, 84, 77, 56, 39, 142, 48, 53, 82, 124, 30, 178, 34, 118, 94, 67, 176, 191, 29, 74, 151, 274, 37, 227, 37, 145, 220, 87, 57, 342, 80, 146, 138, 162, 39, 216, 214, 322, 134, 100, 73, 461, 31, 84, 316, 257, 197, 304, 47, 199, 166, 435, 69, 508, 34, 79, 317
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2013

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdős and Straus.

Crossrefs

Cf. A227610 (1/n), A075785 (3/n), A073101 (4/n), A075248 (5/n), A227612.

Programs

  • Mathematica
    f[n_] := Length@ Solve[2/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 75]

A227612 Table read by antidiagonals: Number of ways m/n can be expressed as the sum of three distinct unit fractions, i.e., m/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and read by antidiagonals.

Original entry on oeis.org

1, 0, 6, 0, 1, 15, 0, 1, 5, 22, 0, 0, 1, 6, 30, 0, 0, 1, 3, 9, 45, 0, 0, 1, 1, 7, 15, 36, 0, 0, 0, 2, 2, 6, 14, 62, 0, 0, 0, 1, 1, 5, 6, 22, 69, 0, 0, 0, 1, 1, 1, 5, 16, 21, 84, 0, 0, 0, 0, 1, 1, 3, 6, 15, 30, 56, 0, 0, 0, 0, 1, 4, 1, 5, 4, 15, 22, 142, 0, 0, 0, 0, 0, 1, 1, 3, 9, 9, 13, 45, 53
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2013

Keywords

Comments

The main diagonal is 1, 1, 1, 1, 1, 1, 1, ..., ; i.e., 1 = 1/2 + 1/3 + 1/6.

Examples

			  m\n| 1  2   3   4   5   6   7   8   9  10  11   12  13   14   15
  ---+------------------------------------------------------------
   1 | 1  6  15  22  30  45  36  62  69  84  56  142  53  124  178  A227610
   2 | 0  1   5   6   9  15  14  22  21  30  22   45  17   36   72  A227611
   3 | 0  1   1   3   7   6   6  16  15  15  13   22   8   27   30  A075785
   4 | 0  0   1   1   2   5   5   6   4   9   7   15   4   14   33  A073101
   5 | 0  0   1   2   1   1   3   5   9   6   3   12   5   18   15  A075248
   6 | 0  0   0   1   1   1   1   3   5   7   5    6   1    6    9  n/a
   7 | 0  0   0   1   1   4   1   2   2   2   2    9   6    6    7  n/a
   8 | 0  0   0   0   1   1   1   1   1   2   0    5   3    5   15  n/a
   9 | 0  0   0   0   0   1   1   3   1   1   0    3   1    2    7  n/a
  10 | 0  0   0   0   0   1   0   2   2   1   0    1   1    3    5  n/a
.
Antidiagonals are {1}, {0, 6}, {0, 1, 15}, {0, 1, 5, 22}, {0, 0, 1, 6, 30}, {0, 0, 1, 3, 9, 45}, ...
		

Crossrefs

Cf. A002966, A073546, A227610 (1/n), A227611 (2/n), A075785 (3/n), A073101 (4/n), A075248 (5/n).

Programs

  • Mathematica
    f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Table[ f[n, m - n + 1], {m, 12}, {n, m, 1, -1}]

A325704 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the numerator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 7, 1, 5, 1, 25, 2, 4, 1, 2, 1, 13, 13, 121, 1, 7, 1, 721, 3, 49, 1, 5, 1, 5, 61, 5041, 5, 3, 1, 40321, 361, 19, 1, 37, 1, 241, 7, 362881, 1, 9, 1, 4, 2521, 1441, 1, 5, 7, 73, 20161, 3628801, 1, 8, 1, 39916801, 25, 6, 121, 181, 1
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the numerator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Numerator
  • PARI
    A325704(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/(primepi(f[i, 1])!))); }; \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A318573(A325709(n)).

A347566 Number of ways 1/n can be expressed as the sum of five distinct unit fractions: 1/n = 1/p + 1/q + 1/r + 1/s + 1/t, with 0 < p < q < r < s < t.

Original entry on oeis.org

72, 2293, 15304, 47314, 112535, 190665, 368474, 577623, 925336, 1164976, 1478492, 2051830, 2240745, 3789424, 4989958, 4672559, 4467275, 7104589, 6548335, 13844524, 13580094, 10633142, 10451326, 20262957, 16621976, 18697914, 25613090, 27523671
Offset: 1

Views

Author

Jud McCranie, Sep 06 2021

Keywords

Crossrefs

A342267 Number of partitions of 1/n into n reciprocals of positive integers.

Original entry on oeis.org

1, 2, 21, 694, 118995, 132891609
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 07 2021

Keywords

Examples

			a(2) = 2 because we have 1/2 = 1/4 + 1/4 = 1/3 + 1/6.
		

Crossrefs

Extensions

a(6) from Jud McCranie, Sep 02 2021

A347569 Number of ways 1/n can be expressed as the sum of six distinct unit fractions: 1/n = 1/p + 1/q + 1/r + 1/s + 1/t + 1/u, with 0 < p < q < r < s < t < u.

Original entry on oeis.org

2320, 244817, 3421052, 18420699, 64025680, 131223239, 431008820, 681922142
Offset: 1

Views

Author

Jud McCranie, Sep 06 2021

Keywords

Crossrefs

Extensions

a(7) and a(8) from Jud McCranie, Oct 15 2021
Previous Showing 21-30 of 55 results. Next