cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 111 results. Next

A151903 a(n) = smallest number k such that n! + k-th prime after n is prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 3, 1, 2, 5, 13, 2, 8, 3, 4, 5, 16, 2, 3, 3, 16, 23, 4, 8, 6, 10, 38, 18, 20, 11, 1, 14, 7, 21, 52, 2, 13, 4, 5, 12, 6, 1, 38, 12, 36, 1, 8, 3, 43, 1, 4, 32, 4, 19, 12, 45, 45, 41, 118, 14, 40, 1, 26, 43, 2, 4, 13, 15, 128, 6, 1, 20, 29, 9, 14, 9, 36, 6, 104, 9, 14, 26, 9
Offset: 1

Views

Author

Artur Jasinski, Apr 12 2008

Keywords

Comments

Because numbers of the form : (n! + prime) are divisible by all primes <= n that mean that first prime number can have form n! + k-th prime after n and no primes of the form n! + k for k > 1 and k < next prime after n

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ ! PrimeQ[n! + NextPrime[n, k]], k++ ]; AppendTo[a, k], {n, 1, 200}]; a

A163079 Primes p such that p$ + 1 is also prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

2, 3, 5, 31, 67, 139, 631, 9743, 16253, 17977, 27901, 37589
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

a(n) are the primes in A163077.

Examples

			5 is prime and 5$ + 1 = 30 + 1 = 31 is prime, so 5 is in the sequence.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(isprime,select(k -> isprime(A056040(k)+1),[$0..n])) end:
  • Mathematica
    f[n_] := 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]; p = 2; lst = {}; While[p < 38000, a = f@p + 1; If[ PrimeQ@a, AppendTo[ lst, p]; Print@p]; p = NextPrime@p]; lst (* Robert G. Wilson v, Aug 08 2010 *)
  • PARI
    is(k) = isprime(k) && ispseudoprime(1+k!/(k\2)!^2); \\ Jinyuan Wang, Mar 22 2020

Extensions

a(8)-a(12) from Robert G. Wilson v, Aug 08 2010

A051855 Numbers n such that (n!)^4+1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 13, 112, 328, 11123
Offset: 1

Views

Author

Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | IsPrime(Factorial(n)^4+1)]; // Vincenzo Librandi, Aug 15 2013
  • Mathematica
    Select[Range[0, 350], PrimeQ[(#!)^4 + 1]&] (* Vincenzo Librandi, Aug 15 2013 *)
  • PARI
    isok(n) = isprime(n!^4 + 1); \\ Michel Marcus, Aug 15 2013
    

Extensions

a(9) from Robert Price, Jul 24 2014
Prepended a(1)=0, Robert Price, Sep 01 2014

A062701 Index of factorial primes of the form k! + 1.

Original entry on oeis.org

1, 2, 4, 2428957
Offset: 1

Views

Author

Labos Elemer, Jul 11 2001

Keywords

Examples

			The exact subscript of the 5th prime [1 + 27! = 10888869450418352160768000001] is not yet available.
		

Crossrefs

Formula

a(n) = PrimePi(A002981(n)!+1).

Extensions

Offset 1 from Michel Marcus, Aug 29 2019

A082952 Smaller of the two factors of the n-th semiprime number of the form m!+1.

Original entry on oeis.org

5, 11, 7, 71, 61, 11, 83, 23, 71, 20639383, 811, 401, 1697, 29, 67411, 14029308060317546154181, 12893, 12318573951317236818169524329, 79, 16567, 6653, 293, 229758023927584562777368125832724248866067995638905559798117
Offset: 1

Views

Author

Hugo Pfoertner, May 26 2003

Keywords

Examples

			a(3)=7 because A078778(3)!+1=6!+1=721=7*103
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[1,1]]&/@Select[Range[50]!+1,PrimeOmega[#]==2&] (* The program generates the first 17 terms of the sequence. To generate more, increase the Range constant but the program may take a long time to run.*) (* Harvey P. Dale, Dec 11 2023 *)

Formula

Numbers p such that p*q=A078778(n)!+1, p, q prime, p

A093437 a(n) = largest prime of the form n!/k! + 1.

Original entry on oeis.org

2, 2, 3, 7, 13, 61, 31, 2521, 20161, 15121, 604801, 39916801, 3991681, 3113510401, 14529715201, 54486432001, 10461394944001, 59281238016001, 53353114214401, 2, 670442572801, 8515157028618240001, 9366672731480064001
Offset: 0

Author

Amarnath Murthy, Apr 01 2004

Keywords

Comments

Is 19 the largest n such that a(n) = 2? There are none for 19 < n <= 600. - Robert Israel, Jan 16 2017

Examples

			a(7) = 2521 because 7!/2! + 1 = 2521 is prime, whereas 7!/1! + 1 = 5041 = 71^2 is composite;
a(19) = 2 because the only prime of the form 19!/k! + 1 is 19!/19! + 1 = 2.
		

Crossrefs

Cf. A093621 (smallest k > 0 such that n!/k! + 1 is prime), A002981 (n! + 1 is prime), A088332 (primes of form n! + 1).

Programs

  • Maple
    f:= proc(n) local k,x;
      x:= n!;
      for k from 2 do
        if isprime(x+1) then return x+1 fi;
        x:= x/k;
      od
    end proc:
    map(f, [$0..40]); # Robert Israel, Jan 16 2017
  • Mathematica
    a[n_] := Module[{k, x}, x = n!; For[k = 2, True, k++, If[PrimeQ[x+1], Return[x+1]]; x = x/k]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 08 2023, after Robert Israel *)

Extensions

Corrected and extended by Hugo Pfoertner, Apr 06 2004

A103319 Primes of the form p! + 1 where p is prime.

Original entry on oeis.org

3, 7, 39916801, 13763753091226345046315979581580902400000001, 33452526613163807108170062053440751665152000000001, 4470115461512684340891257138125051110076800700282905015819080092370422104067183317016903680000000000000001
Offset: 1

Author

Jonathan Sondow, Jan 31 2005

Keywords

Comments

The values of p are 2, 3, 11, 37, 41, 73 which is A093804 (with a different definition). Subsequence of A088332 (primes of the form n! + 1).

Examples

			2 and 2! + 1 = 3 are prime, so 3 is a member.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A2.

Crossrefs

Programs

  • Mathematica
    Select[Table[p!+1,{p,Prime[Range[30]]}],PrimeQ] (* Harvey P. Dale, Nov 28 2019 *)

A139200 Numbers k such that (k!-5)/5 is prime.

Original entry on oeis.org

5, 11, 12, 16, 36, 41, 42, 47, 127, 136, 356, 829, 1863, 2065, 2702, 4509, 7498
Offset: 1

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(16) > 3000. - Ray G. Opao, Oct 05 2008
a(18) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Programs

  • Magma
    [n: n in [5..500] | IsPrime((Factorial(n)-5) div 5)]; // Vincenzo Librandi, Nov 21 2016
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 5)/5], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (* Artur Jasinski *)

Extensions

a(13)-a(15) from Ray G. Opao, Oct 05 2008
a(16) from Serge Batalov, Feb 18 2015
a(17) from Robert Price, Nov 20 2016

A139201 Numbers k such that (k!-6)/6 is prime.

Original entry on oeis.org

4, 5, 7, 8, 11, 14, 16, 17, 18, 20, 43, 50, 55, 59, 171, 461, 859, 2830, 3818, 5421, 5593, 10118, 10880, 24350
Offset: 1

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(25) > 25000. - Robert Price, Dec 15 2016

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime((1/6)*factorial(n)-1)=true then n else end if end proc: seq(a(n),n=4..500); # Emeric Deutsch, Apr 29 2008
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 6)/6], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (* Artur Jasinski *)

Extensions

2 more terms from Emeric Deutsch, Apr 29 2008
More terms from Serge Batalov, Feb 18 2015
a(22)-a(24) from Robert Price, Dec 15 2016

A139202 Numbers k such that (k!-7)/7 is prime.

Original entry on oeis.org

7, 9, 20, 23, 46, 54, 57, 71, 85, 387, 396, 606, 1121, 2484, 6786, 9321, 11881, 18372
Offset: 1

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(19) > 25000. - Robert Price, Nov 05 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 7)/7], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (*Artur Jasinski*)

Extensions

More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 14 2008
a(13)-a(14) PRPs from Sean A. Irvine, Aug 05 2010
a(15)-a(18) PRP from Robert Price, Nov 05 2016
Previous Showing 61-70 of 111 results. Next