cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 86 results. Next

A046882 Ultrafactorials: a(n) = n!^n!.

Original entry on oeis.org

1, 1, 4, 46656, 1333735776850284124449081472843776
Offset: 0

Views

Author

Camillo Lamonaca (Camillo.Lamonaca(AT)dva.gov.au)

Keywords

Comments

a(5) = 3175 042373 780336 892901 667920 556557 182493 442088 021222 004926 225128 381629 943118 937129 098831 435345 716937 405655 305190 657814 877412 786176 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000. - Jonathan Vos Post, Dec 09 2004
Note that, by analogy with factorial primes, subfactorial primes, superfactorial primes and hyperfactorial primes, if a(n)+1 or a(n)-1 is prime, it should be called an ultrafactorial prime. These begin: a(0)+1 = a(1)+1 = 2, a(2)-1 = 3, a(2)+1 = 5. Are there any more? Note that a(3) = 46657 = 13 * 37 * 97 is a 3-brilliant number. a(3)-5, a(3)-3 and a(3)+5 are semiprime; a(3)-7 and a(3)+7 are primes. - Jonathan Vos Post, Dec 09 2004

Crossrefs

Programs

Formula

Sum_{n>=1} 1/a(n) = A100085. - Amiram Eldar, Nov 11 2020

A099351 Numbers k such that 5*k! - 1 is prime.

Original entry on oeis.org

3, 5, 8, 13, 20, 25, 51, 97, 101, 241, 266, 521, 1279, 1750, 2204, 2473, 4193, 5181, 10080
Offset: 1

Views

Author

Brian Kell, Oct 12 2004

Keywords

Comments

a(15) > 1879. - Jinyuan Wang, Feb 04 2020
a(17) > 3500. - Michael S. Branicky, Mar 06 2021

Examples

			k = 5 is here because 5*5! - 1 = 599 is prime.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 1000 do if isprime(5*n! - 1) then print(n) end if end do;
  • Mathematica
    Select[Range[550],PrimeQ[5#!-1]&] (* Harvey P. Dale, Nov 27 2013 *)
  • PARI
    is(n)=ispseudoprime(5*n!-1) \\ Charles R Greathouse IV, Jun 13 2017
    
  • Python
    from sympy import isprime
    from math import factorial
    print([k for k in range(300) if isprime(5*factorial(k) - 1)]) # Michael S. Branicky, Mar 05 2021

Extensions

a(13)-a(14) from Jinyuan Wang, Feb 04 2020
a(15)-a(16) from Michael S. Branicky, Mar 05 2021
a(17)-a(18) from Michael S. Branicky, Apr 03 2023
a(19) from Michael S. Branicky, Jul 12 2024

A156167 Numbers n such that n![7]-1 is prime (where n![7] = A114799(n) = septuple factorial).

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 11, 12, 14, 17, 20, 24, 30, 31, 32, 46, 52, 54, 59, 98, 104, 143, 145, 160, 174, 198, 199, 202, 212, 215, 254, 371, 382, 452, 674, 739, 959, 1249, 1657, 2291, 2553, 2650, 3562, 3727, 3853, 4389, 4604, 5449, 5659, 6026, 6878, 7900, 9564, 10150, 12444, 13321, 22642, 24014, 26598, 27430, 31386, 40707, 43328, 45811
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(65) > 50000. - Robert Price, Sep 09 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 7] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    mf(n,k=7)=prod(i=0,(n-2)\k,n-i*k)
    for( n=1,9999, ispseudoprime(mf(n)-1) & print1(n","))

Extensions

a(43)-a(64) from Robert Price, Sep 09 2012

A180627 Numbers k such that 6*k! - 1 is prime.

Original entry on oeis.org

0, 1, 2, 5, 8, 42, 318, 326, 1054, 2987, 11243
Offset: 1

Views

Author

Robert G. Wilson v, Sep 13 2010

Keywords

Comments

Tested to 4400. - Robert G. Wilson v, Sep 28 2010
a(11) > 6300. - Jinyuan Wang, Feb 04 2020

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ[6 n! - 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
  • PARI
    is(k) = ispseudoprime(6*k!-1); \\ Jinyuan Wang, Feb 04 2020

Extensions

a(10) from Robert G. Wilson v, Sep 28 2010
a(11) from Michael S. Branicky, Jul 04 2024

A180631 Numbers k such that 10*k! - 1 is prime.

Original entry on oeis.org

2, 3, 4, 33, 55, 95, 110, 148, 170, 612, 1155, 2295, 2473, 4143, 5671
Offset: 1

Views

Author

Robert G. Wilson v, Sep 13 2010

Keywords

Comments

a(16) > 12000. - Michael S. Branicky, Jul 04 2024

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ[10 n! - 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst

Extensions

a(12)-a(14) from Jinyuan Wang, Feb 04 2020
a(15) from Michael S. Branicky, Jul 03 2024

A064145 a(n) = tau(n!-1) or number of divisors of n!-1.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 4, 6, 4, 16, 2, 4, 2, 24, 4, 8, 8, 8, 4, 16, 8, 4, 4, 8, 4, 4, 16, 32, 2, 8, 2, 2, 4, 8, 4, 32, 2, 16, 4, 16, 16, 128, 16, 32, 32, 4, 16, 8, 4, 32, 32, 16, 64, 64, 32, 64, 32, 4, 8, 16, 16, 32, 16, 64, 16, 128, 4, 64, 32, 32, 8, 16, 32, 128, 8
Offset: 2

Views

Author

Vladeta Jovovic, Sep 11 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ Print[ DivisorSigma[0, n! - 1]], {n, 2, 40} ]
    DivisorSigma[0,Range[2,80]!-1] (* Harvey P. Dale, Aug 17 2024 *)
  • PARI
    { f=1; for (n=2, 100, f*=n; if (n>1, a=numdiv(f - 1), a=0); write("b064145.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 09 2009

Extensions

More terms from Robert G. Wilson v, Oct 04 2001
a(51)-a(76) from Harry J. Smith, Sep 09 2009
Ambiguous term a(1) removed by Max Alekseyev, May 06 2022

A180628 Numbers k such that 7*k! - 1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 12, 23, 25, 31, 57, 74, 86, 140, 240, 310, 703, 713, 796, 1028, 1102, 1924, 3469, 3990
Offset: 1

Views

Author

Robert G. Wilson v, Sep 13 2010

Keywords

Comments

a(26) > 12000. - Michael S. Branicky, Jul 07 2024

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ[7 n! - 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
    Select[Range[4000],PrimeQ[7#!-1]&] (* Harvey P. Dale, Apr 22 2024 *)
  • PARI
    is(k) = ispseudoprime(7*k!-1); \\ Jinyuan Wang, Feb 03 2020

Extensions

a(23) from Jinyuan Wang, Feb 03 2020
a(24)-a(25) from Michael S. Branicky, Apr 25 2023

A180630 Numbers k such that 9*k! - 1 is prime.

Original entry on oeis.org

2, 3, 12, 15, 16, 25, 30, 38, 59, 82, 114, 168, 172, 175, 213, 229, 251, 302, 311, 554, 2538, 3050, 3363, 12316
Offset: 1

Views

Author

Robert G. Wilson v, Sep 13 2010

Keywords

Comments

a(22) > 2575. - Jinyuan Wang, Feb 03 2020

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ[9 n! - 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
  • PARI
    is(k) = ispseudoprime(9*k!-1); \\ Jinyuan Wang, Feb 03 2020

Extensions

a(21) from Jinyuan Wang, Feb 03 2020
a(22)-a(23) from Michael S. Branicky, Apr 25 2023
a(24) from Michael S. Branicky, Nov 02 2024

A051856 Numbers k such that (k!)^2 + k! + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 76, 2837, 6001, 7076
Offset: 1

Views

Author

Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999

Keywords

Examples

			6 is in the sequence because (6!)^2+6!+1=519121 is prime.
		

References

  • H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3) (1987)

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n!^2+n!+1], Print[n]], {n, 600}] (* Farideh Firoozbakht, Jul 12 2003 *)

Extensions

Edited by R. J. Mathar, Aug 08 2008
a(8)-a(10) from Serge Batalov, Nov 24 2011

A180629 Numbers k such that 8*k! - 1 is prime.

Original entry on oeis.org

0, 1, 3, 4, 8, 33, 121, 177, 190, 276, 473, 484, 924, 937, 1722, 2626, 4077, 4464, 6166
Offset: 1

Views

Author

Robert G. Wilson v, Sep 13 2010

Keywords

Comments

Tested to 4700. - Robert G. Wilson v, Sep 27 2010
Tested to 5127. - Jinyuan Wang, Feb 03 2020
Tested to 12000. - Michael S. Branicky, Jul 11 2024

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ[8 n! - 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
  • PARI
    is(k) = ispseudoprime(8*k!-1); \\ Jinyuan Wang, Feb 03 2020

Extensions

a(15)-a(18) from Robert G. Wilson v, Sep 27 2010
a(19) from Michael S. Branicky, May 27 2023
Previous Showing 31-40 of 86 results. Next