cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A384964 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 1, k=1..max(1,2*n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 8, 6, 2, 1, 6, 29, 60, 73, 52, 25, 6, 2, 14, 113, 388, 768, 903, 728, 379, 136, 26, 6, 34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17, 95, 1763, 12650, 49806, 123547, 210314, 255884, 228807, 150929, 73428, 25536, 6142, 892, 73
Offset: 1

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

Equivalently, T(n,k) is the number of sensed simple planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table.

Examples

			Triangle begins:
   1;
   1;
   1,   1,
   2,   2,    1,    1,
   3,   8,    8,    6,     2,     1,
   6,  29,   60,   73,    52,    25,     6,    2,
  14, 113,  388,  768,   903,   728,   379,  136,   26,   6,
  34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17;
  ...
		

Crossrefs

Row sums are A384965.
Antidiagonal sums are A006394.
Columns 1..2 are A002995, A384966.
Cf. A379430 (not necessarily simple), A342059 (2-connected), A239893 (3-connected), A384963 (unsensed).

A005354 Number of asymmetric planar trees with n nodes.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 3, 9, 28, 85, 262, 827, 2651, 8626, 28507, 95393, 322938, 1104525, 3812367, 13266366, 46504495, 164098390, 582521687, 2079133141, 7457788295, 26872946466, 97238824018, 353218128299, 1287657977946, 4709784136316
Offset: 0

Views

Author

Keywords

Comments

a(13) in the Labelle table is a typographical error. - R. J. Mathar, Feb 03 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Feb 03 2010: (Start)
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A007727 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do a := a+binomial(2*d,d)*numtheory[mobius](n/d) ; end do ; a ; end proc;
    A022553 := proc(n) A007727(n)/2/n ; end proc:
    A005354 := proc(n) local a; if n <=1 then 1; else a := A022553(n-1) ; a := a-A000108(n-1)/2 ; if type(n,'even') then a := a-A000108(n/2-1)/2 ; end if; a ; end if; end proc: seq(A005354(n),n=0..20) ; (End)
  • Mathematica
    a[0] = a[1] = 1; a[n_] := DivisorSum[n-1, MoebiusMu[(n-1)/#]*Binomial[2#, #]&]/(2(n-1)) - CatalanNumber[n-1]/2 - Boole[EvenQ[n]]*CatalanNumber[n/2 - 1]/2; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, May 09 2012, after R. J. Mathar, updated Jan 31 2018 *)

Formula

From Christian G. Bower, Dec 15 1999: (Start)
G.f.: 1+B(x)+(C(x^2)-C(x)^2)/2 where B is g.f. of A022553(n-1) and C is g.f. of A000108(n-1).
a(n) = A022553(n-1) - A000108(n-2)/2 - (if n is even) A000108(n/2-1)/2. (End)

Extensions

More terms from Christian G. Bower, Dec 15 1999

A038775 a(n) is the number of cycles of the permutation that converts forest(n) of depth-first planar planted binary trees into breadth-first representation.

Original entry on oeis.org

1, 2, 3, 6, 10, 12, 17, 26, 34, 50, 56, 68, 82, 94, 113
Offset: 1

Views

Author

Wouter Meeussen, May 04 2000

Keywords

Comments

The first a(n) terms of A038774 add up to Catalan(n) = A000108(n).

Examples

			a(5)=10 since there are 10 cycles in this permutation of forest(5), with lengths 1, 1, 3, 4, 3, 2, 16, 8, 2, 2 summing up to 42=Catalan(5).
		

Crossrefs

Similarly generated sequences: A001683, A002995, A003239, A057507, A057513.

Extensions

a(13)-a(15) from Sean A. Irvine, May 22 2022

A085173 Permutation of natural numbers induced by the Catalan bijection gma085173 acting on symbolless S-expressions encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 5, 6, 4, 22, 21, 18, 20, 17, 13, 12, 15, 19, 14, 10, 16, 11, 9, 64, 63, 59, 62, 58, 50, 49, 55, 61, 54, 46, 57, 48, 45, 36, 35, 32, 34, 31, 41, 40, 52, 60, 51, 38, 56, 39, 37, 27, 26, 43, 47, 42, 29, 53, 33, 28, 24, 44, 30, 25, 23, 196, 195, 190, 194, 189
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

Comments

This Catalan bijection rotates by "half step" the interpretations (pp)-(rr) of Stanley, using the "rising slope" mapping illustrated in A085161.

Crossrefs

Inverse: A085174. a(n) = A085161(A085174(A085161(n))) = A085169(A057501(A085170(n))) = A074684(A057501(A074683(n))). Occurs in A073200. Cf. also A085159 (whole step rotate), A086427.
Number of cycles: A002995. Number of fixed points: A019590. Max. cycle size: A057543. (In range [A014137(n-1)..A014138(n-1)] of this permutation, possibly shifted one term left or right).

A054358 Number of unlabeled asymmetric 2-ary cacti having n polygons.

Original entry on oeis.org

1, 1, 0, 1, 2, 8, 18, 61, 170, 538, 1654, 5344, 17252, 57146, 190786, 646305, 2209050, 7626164, 26532732, 93013852, 328196780, 1165060170, 4158266282, 14915635376, 53745892932, 194477856048, 706436256598, 2575316698792, 9419568272632
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=2 of A303913.

Programs

  • Mathematica
    a[0] = 1; a[n_] := DivisorSum[n, MoebiusMu[n/#] Binomial[2#, #]&]/n - Binomial[2n, n]/(n+1);
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1)) \\ Andrew Howroyd, May 02 2018

Formula

a(n) = (1/n)*(Sum_{d|n} mu(n/d)*binomial(2*d, d)) - binomial(2*n, n)/(n+1) for n > 0. - Andrew Howroyd, May 02 2018

Extensions

More terms from Vladeta Jovovic, Oct 04 2007

A085174 Permutation of natural numbers induced by the Catalan bijection gma085174 acting on symbolless S-expressions encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 8, 6, 7, 5, 4, 22, 19, 21, 15, 14, 18, 16, 20, 13, 11, 17, 12, 10, 9, 64, 60, 63, 52, 51, 59, 56, 62, 41, 39, 58, 40, 38, 37, 50, 47, 49, 43, 42, 55, 53, 61, 36, 33, 54, 35, 29, 28, 46, 44, 57, 32, 30, 48, 34, 27, 25, 45, 31, 26, 24, 23, 196, 191, 195, 178, 177
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

Comments

This Catalan bijection rotates by "half step" the interpretations (pp)-(rr) of Stanley, using the "rising slope" mapping illustrated in A085161.

Crossrefs

Inverse: A085173. a(n) = A085161(A085173(A085161(n))) = A085169(A057502(A085170(n))) = A074684(A057502(A074683(n))). Occurs in A073200. Cf. also A085160 (whole step rotate), A086428.
Number of cycles: A002995. Number of fixed points: A019590. Max. cycle size: A057543. (In range [A014137(n-1)..A014138(n-1)] of this permutation, possibly shifted one term left or right).

A003241 Number of achiral rooted trees.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 26, 45, 71, 110, 168, 247, 351, 503, 700, 944, 1294, 1719, 2267, 2961, 3839, 4891, 6297, 7891, 9912, 12347, 15381, 18784, 23203, 28138, 34233, 41275, 49824, 59306, 71309, 84268, 100127, 118045, 139472, 162659
Offset: 1

Views

Author

Keywords

Comments

There may be an error in eq (37) in the Harary-Robinson paper. - R. J. Mathar, Sep 28 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    L := BFILETOLIST("b003238.txt") ;
    Pofxn := proc(n)
            global L;
            add( op(i,L)*x^(i+1),i=1..120) ;
            subs(x=x^n,%) ;
    end proc:
    P := Pofxn(1) ;
    Rn := proc(n)
            global L;
            (Pofxn(n-2)*Pofxn(2)+Pofxn(n-1)*Pofxn(1)-Pofxn(n))/x^(n-1) ;
    end proc:
    Px2 := Pofxn(2) ;
    Px3 := Pofxn(3) ;
    Px4 := Pofxn(4) ;
    # eq (37) seems not to work
    # R := 2*x+P^2/x^2+(1-x)*P/x*(Px2/x^2-1)-(P^2-Px2)/2/x -Px3/x^2-(Px2^2-Px4)/2/x^3 ;
    #use eqs (39)-(44) instead
    R := x+P+(P^2+Px2)/2/x+P*Px2/x^2+P*Px3/x^3+(Px2^2-Px4)/2/x^3 :
    # heuristics, adding up to R^(40) suffices for first 80 terms
    for n from 5 to 40 do
            R := R+Rn(n) :
    end do:
    taylor(R,x=0,80) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Sep 28 2011
  • Mathematica
    L = Cases[Import["https://oeis.org/A003238/b003238.txt", "Table"], {, }][[All, 2]];
    Pofxn[n_] := Sum[x^(i+1) L[[i]], {i, 1, 120}] /. x -> x^n;
    P = Pofxn[1];
    Rn[n_] := (1/x^(n-1))(Pofxn[2] Pofxn[n-2] + Pofxn[1] Pofxn[n-1] - Pofxn[n]);
    Px2 = Pofxn[2]; Px3 = Pofxn[3]; Px4 = Pofxn[4];
    R = (P^2 + Px2)/(2x) + (P Px2)/x^2 + (P Px3)/x^3 + P + (Px2^2 - Px4)/(2x^3) + x;
    For[n = 5, n <= 40, n++, R += Rn[n]];
    CoefficientList[R + O[x]^41, x] // Rest (* Jean-François Alcover, Apr 06 2020, from Maple *)

Extensions

Extended by R. J. Mathar, Sep 28 2011

A006936 Moebius transform of numbers of preferential arrangements.

Original entry on oeis.org

0, 1, 0, 2, 12, 74, 538, 4682, 47280, 545832, 7087186, 102247562, 1622632020, 28091567594, 526858343698, 10641342970366, 230283190930560, 5315654681981354, 130370767028589528, 3385534663256845322
Offset: 0

Views

Author

Keywords

Comments

Moebius transform of A000670(n-1)=[1,1,3,13,75,...] is a(n)=[1,0,2,12,74,...]. - Michael Somos, Mar 04 2004

Crossrefs

Cf. A000670.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*(#-1)!*SeriesCoefficient[1/(2-Exp[x + O[x]^#]), #-1]&]; a[0]=0; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 03 2015, adapted from PARI *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,moebius(n/d)*(d-1)!*polcoeff(1/(2-exp(x+O(x^d))),d-1)))

A106363 Planar trees where no branch is identical to its adjacent neighbor.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 3, 7, 14, 43, 115, 326, 931, 2719, 7979, 23804, 71418, 216444, 660276, 2028558, 6268350, 19479746, 60835542, 190881085, 601459251, 1902680249, 6040955223, 19245061851, 61503863732, 197135868680, 633615135842
Offset: 1

Views

Author

Christian G. Bower, Apr 29 2005

Keywords

Crossrefs

Cf. A002995.

Formula

G.f.: A(x) = B(x) + (C(x^2) - C(x)^2)/2. B(x) is g.f. of A106362. C(x) is g.f. of A106361.

A003240 Number of partially achiral rooted trees.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 62, 120, 236, 454, 884, 1697, 3275, 6266, 12020, 22935, 43788, 83325, 158516, 300914, 570794, 1081157, 2045934, 3867617, 7304149, 13783221, 25984936, 48956715, 92155376, 173376484, 325919786, 612378787, 1149777034
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • PARI
    t(n)=local(A=x); if(n<1, 0, for(k=1, n-1, A/=(1-x^k+x*O(x^n))^polcoeff(A, k)); polcoeff(A, n))
    {n=100;Ty2=sum(i=0,100,t(i)*y^(2*i)); p=subst(y*Ty2/(y-Ty2),y,y+y*O(y^n));p=Pol(p,y); r=subst(Ty2*(y+p+(p^2-subst(p,y,y^2))/(2*y))/y^2,y,x+x*O(x^n)); for(I=1,n-2,print1(polcoeff(r,i)","))} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008

Formula

a(n) ~ c * d^n * n, where d = 1.8332964415228533737988849634129366404833316666328290543862325494628120733... is the root of the equation Sum_{k>=1} A000081(k) / d^(2*k-1) = 1 and c = 0.030410107348865811204534352170117292921782094079168428605205142049899... - Vaclav Kotesovec, Dec 13 2020

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008
Previous Showing 21-30 of 34 results. Next