cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 355 results. Next

A326690 Denominator of the fraction (Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 4, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 28, 1, 1, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 45, 23, 1, 16, 49, 25, 51, 52, 1, 27, 11, 8, 19, 29, 1, 60, 1, 31, 63, 64, 65, 11, 1, 68, 69, 35, 1, 72
Offset: 1

Views

Author

Jonathan Sondow, Jul 18 2019

Keywords

Comments

Theorem. If n is a prime or a Carmichael number, then a(n) = A309132(n) = denominator of (N(n-1)/n + D(n-1)/n^2), where B(k) = N(k)/D(k) is the k-th Bernoulli number. This is a generalization of Theorem 1 in A309132 that A309132(p) = 1 if p is a prime. The proof generalizes that in A309132. As an application of Theorem, for n a prime or a Carmichael number one can compute A309132(n) without calculating Bernoulli numbers; see A309268.
A composite number n is a Giuga number A007850 if and only if a(n) = 1. (In fact, Sum_{prime p | n} 1/p - 1/n = 1 for all known Giuga numbers n.)
Semiprimes m = pq such that 1/p + 1/q - 1/m = p/q are exactly A190275. - Amiram Eldar and Thomas Ordowski, Jul 22 2019
The preceding comment may be rephrased as "Semiprimes m = pq such that A326689(m) = p and a(m) = q are exactly A190275." - Jonathan Sondow, Jul 22 2019
More generally, semiprimes m = pq such that 1/p + 1/q - 1/m = P/Q are exactly A190273, where P <> Q are primes. In other words, semiprimes m such that A326689(m) is prime and a(m) is prime are exactly A190273. - Amiram Eldar and Thomas Ordowski, Jul 25 2019

Examples

			-1/1, 0/1, 0/1, 1/4, 0/1, 2/3, 0/1, 3/8, 2/9, 3/5, 0/1, 3/4, 0/1, 4/7, 7/15, 7/16, 0/1, 7/9, 0/1, 13/20, 3/7, 6/11, 0/1, 19/24, 4/25, 7/13, 8/27, 17/28, 0/1, 1/1
a(12) = denominator of (Sum_{prime p | 12} 1/p - 1/12) = denominator of (1/2 + 1/3 - 1/12) = denominator of 3/4 = 4.
Computing A309132(561) involves numerator(B(560)) which has 865 digits. But 561 is a Carmichael number, so Theorem implies A309132(561) = a(561) = denominator(1/3 + 1/11 + 1/17 - 1/561) = denominator(90/187) = 187.
		

Crossrefs

Numerators are A326689. Quotients n/a(n) are A326691.
Cf. A069359, A007947 (denominator of Sum_{prime p | n} 1/p).

Programs

  • Magma
    [1] cat [Denominator(&+[1/p:p in PrimeDivisors(k)]-1/k):k in [2..72]]; // Marius A. Burtea, Jul 27 2019
  • Maple
    A326690 := n -> denom((A069359(n)-1)/n):
    seq(A326690(n), n=1..72); # Peter Luschny, Jul 22 2019
  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[ f[n], {n, 100}]
  • PARI
    a(n) = denominator(sumdiv(n, d, isprime(d)/d) - 1/n); \\ Michel Marcus, Jul 19 2019
    
  • SageMath
    p = lambda n: [n//f[0] for f in factor(n)]
    A326690 = lambda n: ((sum(p(n)) - 1)/n).denominator()
    [A326690(n) for n in (1..72)] # Peter Luschny, Jul 22 2019
    

Formula

a(n) = 1 if n is a prime or a Giuga number A007850.
a(n) = denominator of (N(n-1)/n + D(n-1)/n^2) if n is a Carmichael number A002997.
a(n) = denominator((A069359(n) - 1)/n). - Peter Luschny, Jul 22 2019

A324371 Product of all primes p dividing n such that the sum of the base p digits of n is less than p, or 1 if no such prime.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 1, 5, 13, 3, 7, 29, 15, 31, 2, 11, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 1, 23, 47, 1, 7, 5, 17, 13, 53, 3, 55, 7, 19, 29, 59, 5, 61, 31, 7, 2, 13, 11, 67, 17, 23, 7, 71, 1, 73, 37, 5, 19, 77, 13, 79, 5, 3, 41, 83, 21
Offset: 1

Views

Author

Keywords

Comments

Does not contain any elements of A324315, and thus none of the Carmichael numbers A002997.
See the section on Bernoulli polynomials in Kellner and Sondow 2019.

Examples

			For p = 2 and 3, the sum of the base p digits of 6 is 1+1+0 = 2 >= 2 and 2+0 = 2 < 3, respectively, so a(6) = 3.
		

Crossrefs

Programs

  • Maple
    f:= n -> convert(select(p -> convert(convert(n,base,p),`+`)Robert Israel, Apr 26 2020
  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    DD3[n_] := Times @@ Select[LP[n], SD[n, #] < # &];
    Table[DD3[n], {n, 1, 100}]
  • Python
    from math import prod
    from sympy.ntheory import digits
    from sympy import primefactors as pf
    def a(n): return prod(p for p in pf(n) if sum(digits(n, p)[1:]) < p)
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jul 03 2022

Formula

a(n) * A324369(n) = A007947(n) = radical(n).
a(n) * A195441(n) = a(n) * A324369(n) * A324370(n) = A144845(n-1) = denominator(Bernoulli_{n-1}(x)).

A050992 4-Knödel numbers.

Original entry on oeis.org

6, 8, 12, 16, 20, 24, 28, 40, 44, 48, 52, 60, 68, 76, 80, 92, 112, 116, 120, 124, 148, 154, 164, 172, 188, 208, 212, 236, 240, 244, 264, 268, 280, 284, 292, 316, 332, 340, 356, 364, 388, 404, 412, 428, 436, 452, 508, 520, 524, 548, 556, 596, 604, 628, 652
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[6, 1000, 2], Divisible[# - 4, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A050993 5-Knödel numbers.

Original entry on oeis.org

25, 65, 85, 145, 165, 185, 205, 265, 305, 365, 445, 485, 505, 545, 565, 685, 745, 785, 825, 865, 905, 965, 985, 1085, 1145, 1165, 1205, 1285, 1345, 1385, 1405, 1465, 1565, 1585, 1685, 1745, 1765, 1865, 1925, 1945, 1985, 2005, 2045, 2105, 2165
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10, 2500, 5], Divisible[# - 5, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A112428 Carmichael numbers equal to the product of 5 primes.

Original entry on oeis.org

825265, 1050985, 9890881, 10877581, 12945745, 13992265, 16778881, 18162001, 27336673, 28787185, 31146661, 36121345, 37167361, 40280065, 41298985, 41341321, 41471521, 47006785, 67371265, 67994641, 69331969, 74165065
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 11 2005

Keywords

Comments

A subsequence is given by (6n+1)*(12n+1)*(18n+1)*(36n+1)*(72n+1) with n in A206349. - M. F. Hasler, Apr 14 2015

Examples

			a(1)=825265=5*7*17*19*73
		

Crossrefs

Programs

Formula

A112428 = A002997 intersect A014614. - M. F. Hasler, Apr 14 2015

Extensions

Crossrefs added by M. F. Hasler, Apr 14 2015

A067256 Numbers n such that n, 2n+1, 3n+2 are primes.

Original entry on oeis.org

3, 5, 23, 29, 83, 89, 173, 233, 239, 293, 419, 659, 953, 1013, 1223, 1409, 1559, 1583, 1889, 2003, 2129, 2339, 2549, 2693, 2939, 3359, 3389, 3593, 3803, 4349, 4373, 4409, 4919, 4943, 5333, 6113, 6173, 8093, 8273, 8513, 9059, 9479, 9539, 10163, 10313
Offset: 1

Views

Author

Benoit Cloitre, Feb 20 2002

Keywords

Comments

a(n)*(2a(n)+1)*(3a(n)+2) are Lucas-Carmichael numbers for n > 1. Analogous to A174734 as A006972 (Lucas-Carmichael numbers) is analogous to A002997 (Carmichael numbers). - Amiram Eldar, Aug 11 2017

Crossrefs

Programs

A182816 Number of values b in Z/nZ such that b^n = b.

Original entry on oeis.org

1, 2, 3, 2, 5, 4, 7, 2, 3, 4, 11, 4, 13, 4, 9, 2, 17, 4, 19, 4, 9, 4, 23, 4, 5, 4, 3, 8, 29, 8, 31, 2, 9, 4, 9, 4, 37, 4, 9, 4, 41, 8, 43, 4, 15, 4, 47, 4, 7, 4, 9, 8, 53, 4, 9, 4, 9, 4, 59, 8, 61, 4, 9, 2, 25, 24, 67, 4, 9, 16, 71, 4, 73, 4, 9, 8, 9, 8, 79, 4, 3, 4, 83, 8, 25, 4, 9, 4, 89, 8, 49, 4, 9, 4, 9, 4, 97, 4, 9, 4, 101, 8, 103, 4, 45, 4, 107, 4, 109, 8, 9, 8, 113
Offset: 1

Views

Author

M. F. Hasler, Dec 05 2010

Keywords

Comments

a(n) is the number of nonnegative bases b < n such that b^n == b (mod n).

Crossrefs

Cf. A063994.

Programs

  • Maple
    f:= n -> mul(1+igcd(n-1,p[1]-1), p = ifactors(n)[2]):
    map(f, [$1..200]); # Robert Israel, Sep 05 2018
  • Mathematica
    Table[Times @@ Map[(1 + GCD[n - 1, # - 1]) &, FactorInteger[n][[All, 1]] ], {n, 113}] (* Michael De Vlieger, Sep 01 2020 *)
  • PARI
    A182816(n)=sum(a=1,n,Mod(a,n)^n==a);
    
  • PARI
    { A182816(n) = my(p=factor(n)[,1]); prod(j=1,#p,1+gcd(n-1,p[j]-1)); } \\ Max Alekseyev, Dec 06 2010

Formula

a(n) = n for primes A000040 and Carmichael numbers A002997.
a(n) = Product_{i=1..m} (1 + gcd(n-1, p_i-1)), where p_1, p_2, ..., p_m are all distinct primes dividing n. - Max Alekseyev, Dec 06 2010
a(p^k) = p for prime p with k > 0. - Thomas Ordowski, Sep 05 2018

A208154 6-Knödel numbers.

Original entry on oeis.org

8, 10, 12, 18, 24, 30, 36, 42, 66, 72, 78, 84, 90, 102, 114, 126, 138, 168, 174, 186, 210, 222, 234, 246, 252, 258, 282, 318, 354, 366, 390, 396, 402, 426, 438, 456, 474, 498, 504, 534, 546, 582, 606, 618, 630, 642, 654, 678, 762, 786, 798, 822, 834, 894, 906
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:= proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,6);
  • Mathematica
    knodelQ[m_Integer?PrimeQ, n_Integer] := False; knodelQ[m_Integer, n_Integer] := Module[{i = n + 1}, While[i < m && (GCD[i, m] > 1 || Mod[i^(m - n), m] == 1), i++]; (i == m)]; Select[Range[1000], knodelQ[#, 6] &] (* Alonso del Arte, Feb 24 2012 *)

A208158 10-Knödel numbers.

Original entry on oeis.org

12, 24, 28, 30, 50, 70, 110, 130, 150, 170, 190, 230, 290, 310, 330, 370, 410, 430, 442, 470, 530, 532, 550, 590, 610, 670, 710, 730, 790, 830, 890, 910, 970, 1010, 1030, 1070, 1090, 1130, 1270, 1310, 1370, 1390, 1490, 1510, 1570, 1630, 1650, 1670, 1730, 1790
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    knodel:=proc(i,k)
    local a,n,ok;
    for n from k+1 to i do
      ok:=1;
      for a from 1 to n do
         if gcd(a,n)=1 then  if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
      od;
      if ok=1 then print(n); fi;
    od;
    end:
    knodel(10000,10)
  • Mathematica
    Select[Range[12, 1790, 2], Divisible[# - 10, CarmichaelLambda[#]]&] (* Jean-François Alcover, Mar 01 2018 *)

A324319 Terms of A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) that are also hexagonal numbers (A000384) with index equal to their largest prime factor.

Original entry on oeis.org

231, 561, 3655, 5565, 8911, 10585, 13695, 23653, 32131, 45451, 59685, 74305, 108345, 115921, 157641, 243253, 248865, 302253, 314821, 334153, 371091, 392055, 417241, 458403, 505515, 546535, 688551, 702705, 795691, 821121, 915981, 932295, 1004653, 1145341, 1181953
Offset: 1

Views

Author

Keywords

Comments

561, 8911, and 10585 are also Carmichael numbers (A002997).
The smallest primary Carmichael number (A324316) in the sequence is 8801128801 = 181 * 733 * 66337 = A000384(66337).
See the section on polygonal numbers in Kellner and Sondow 2019.
Subsequence of the special polygonal numbers A324973. - Jonathan Sondow, Mar 27 2019

Examples

			A324315(1) = 231 = 3 * 7 * 11 = 11 * (2 * 11 - 1) = A000384(11), so 231 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    HN[n_] := n(2n - 1);
    TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &];
    Select[HN@ Prime[Range[100]], TestS[#] &]

Extensions

More terms from Amiram Eldar, Dec 05 2020
Previous Showing 61-70 of 355 results. Next