cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A095371 Number of distinct prime factors of record setting repunits (A328899).

Original entry on oeis.org

0, 1, 2, 5, 7, 8, 10, 13, 14, 20, 21, 22, 26, 29, 32, 33, 34, 35, 40, 44, 55, 56, 63
Offset: 1

Views

Author

Labos Elemer, Jun 04 2004

Keywords

Comments

Conjecture: a(24) = 73, a(25) = 94, a(26) = 99, a(27) >= 107, a(28) >= 127, a(29) >= 136, a(30) >= 140, a(31) >= 151, a(32) >= 159, a(33) >= 163, a(34) >= 178, a(35) >= 184, a(36) >= 213, a(37) >= 214. - Chai Wah Wu, Nov 01 2019

Crossrefs

Programs

Extensions

Data corrected by Ray Chandler and N. J. A. Sloane, May 03 2017
Name edited by Giovanni Resta, Oct 30 2019
a(20)-a(21) from Chai Wah Wu, Oct 30 2019
a(22)-a(23) from Chai Wah Wu, Nov 01 2019

A081317 Primes p such that p divides 10^n-1, p is the largest prime producing decimal fraction period n and p is not the largest prime dividing 10^n-1.

Original entry on oeis.org

13, 52579, 8779, 2161, 69857, 909090909090909091, 459691, 549797184491917, 14175966169, 183411838171, 296557347313446299, 388847808493, 3404193829806058997303, 8985695684401, 297262705009139006771611927
Offset: 1

Views

Author

Hugo Pfoertner, Mar 18 2003

Keywords

Examples

			a(1)=13 because the largest factor 37 in the factorization of 10^6-1=999999=3^3*7*11*13*37 already occurs in the factorization of 10^3-1=3^3*37 and produces only a decimal fraction period of 3. 1/37=0.027027027...., 1/13=0.0769230769230...
		

Crossrefs

Formula

Numbers in A061075(n) such that A061075(n) is not equal to A005422(n). The corresponding values of n are given in A081318.
a(n) = A061075(A081318(n)). - Max Alekseyev, Apr 27 2022

Extensions

More terms from Hans Havermann, May 31 2003

A147556 Largest prime factor of prime(n)-th repunit number.

Original entry on oeis.org

11, 37, 271, 4649, 513239, 265371653, 5363222357, 1111111111111111111, 11111111111111111111111, 77843839397, 57336415063790604359, 2212394296770203368013, 201763709900322803748657942361
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 26 2008

Keywords

Comments

The sequence of repunit primes is a subsequence of this sequence.

Examples

			Prime(15)=47 and (10^47-1)/9 = 35121409*316362908763458525001406154038726382279, so a(15)=316362908763458525001406154038726382279.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[FromDigits[PadRight[{},n,1]]][[-1,1]],{n,Prime[ Range[15]]}] (* Harvey P. Dale, Feb 23 2016 *)

Formula

a(n) = A003020(A000040(n)) = A006530(A002275(A000040(n))) = A006530(A019328(A000040(n))). - Ray Chandler, May 11 2017

Extensions

Edited by Ray Chandler, Apr 06 2011
terms to a(66) in b-file from Ray Chandler, May 11 2017
a(67)-a(70) in b-file from Max Alekseyev, Apr 26 2022

A177928 Let n be the number whose square n^2 has the decimal expansion { d(1) d(2) ... d(D) }, and let q be the corresponding number whose decimal expansion is { d(2) d(3) ... d(D) d(1)}. Sequence lists numbers n dividing q.

Original entry on oeis.org

1, 2, 3, 9, 27, 33, 66, 99, 123, 246, 271, 333, 351, 407, 429, 462, 481, 518, 546, 567, 666, 693, 702, 715, 777, 814, 819, 924, 936, 999, 1434, 2151, 2868, 3333, 4521, 4818, 6666, 7227, 7373, 7535, 8631, 9042, 9999, 33333, 53658, 54546, 66666, 80487, 81819
Offset: 1

Views

Author

Michel Lagneau, May 15 2010

Keywords

Comments

A178028 is a subsequence of this sequence.
When n divides q, n divides d(D)*(10^D - 1) because q = 10*n^2 - d(D)*(10^D - 1). If n is prime, n divides (10^D - 1); for example, the prime term 271 divides 10^5 - 1 = 99999 = 271*369.

Examples

			429 is in the sequence because 429^2 = 184041 and 840411/429 = 1959.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 10^6 do: d:=convert(n^2, base, 10):n1:=nops(d):s:=sum('d[i]*10^i','i'=1..n1-1)+d[n1]:if irem(s,n)=0 then printf(`%d, `,n):else fi:od:
  • Mathematica
    Select[Range[100000], Mod[FromDigits[RotateLeft[IntegerDigits[#^2]]], #] == 0 &] (* T. D. Noe, Jul 27 2012 *)

A366165 a(n) is the least k > 0 such that 10^(2*n-1) - k can be written as a product j*m, where j and m have an equal number of decimal digits.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 3, 1, 5, 3, 1, 6, 1, 7, 1, 2, 2, 1, 4, 7, 5, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 10, 4, 3, 3, 10, 1, 2, 3, 1, 1, 1, 7, 1, 1
Offset: 1

Views

Author

Hugo Pfoertner, Oct 04 2023

Keywords

Comments

a(n) <= 10 since 10^(2n-1)-10 = (10^(n-1)+1)(10^n-10). A consequence is that j and m in the product both have n decimal digits. - Chai Wah Wu, Oct 05 2023

Examples

			n a(n) 10^(2n-1)-a(n)       j       m
1  1   9                    1       9
2  1   999                 27      37
3  1   99999              123     813
4  1   9999999           2151    4649
5 10   999999990        10001   99990
6  1   99999999999     194841  513239
7  3   9999999999997  2769823 3610339
More than one pair (j,m) may exist, e.g., 9 = 1*9 = 3*3.
		

Crossrefs

A067272 are the solutions for even exponents of 10, corresponding to (j,m) = (9,9), (99,99), (999,999), ... .

Programs

  • PARI
    a366165(n)={my (p10=10^(2*n-1)); for (dd=1, p10, my (d=p10-dd); fordiv (d, x, fordiv (d, y, if (x*y==d && #digits(x)==#digits(y), return(dd)))))};
    
  • Python
    from itertools import count, takewhile
    from sympy import divisors
    def A366165(n):
        a, l1, l2 = 10**((n<<1)-1), 10**(n-1), 10**n
        for k in count(1):
            b = a-k
            if any(l1<=db for d in takewhile(lambda m:m*m<=b, divisors(b))):
                return k # Chai Wah Wu, Oct 05 2023

Extensions

a(33)-a(35) from Chai Wah Wu, Oct 05 2023
a(36)-a(46) from Chai Wah Wu, Oct 07 2023

A366921 a(n) is the least prime factor > 3 of 10^n - 1.

Original entry on oeis.org

11, 37, 11, 41, 7, 239, 11, 37, 11, 21649, 7, 53, 11, 31, 11, 2071723, 7, 1111111111111111111, 11, 37, 11, 11111111111111111111111, 7, 41, 11, 37, 11, 3191, 7, 2791, 11, 37, 11, 41, 7, 2028119, 11, 37, 11, 83, 7, 173, 11, 31, 11, 35121409, 7, 239, 11, 37, 11, 107
Offset: 2

Views

Author

Hugo Pfoertner, Oct 28 2023

Keywords

Examples

			a(2) = 11 because 99 = 3^2 * 11 = 3^A366922(2) * A003020(2).
a(9) = 37 because 10^9 - 1 = 3^4 * 37 * 333667 = 3^A366922(9) * 37 * A003020(9).
		

Crossrefs

Programs

  • PARI
    a366921(n) = factor(10^n-1)[2,1]

A366922 a(n) is the exponent of 3 in the prime factorization of 10^n - 1.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 6, 2, 2, 3, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

Hugo Pfoertner, Oct 28 2023

Keywords

Comments

1

Crossrefs

Programs

  • Mathematica
    a[n_]:=IntegerExponent[10^n-1,3]; Array[a,90] (* Stefano Spezia, Oct 28 2023 *)
  • PARI
    a366922(n) = valuation(10^n-1,3)
    
  • Python
    def A366922(n):
        c = 0
        a, b = divmod(10**n-1, 3)
        while b == 0:
            a, b = divmod(a, 3)
            c += 1
        return c # Chai Wah Wu, Oct 29 2023

Formula

a(n) = A007949(10^n - 1).
a(n) = A007949(n) + 2 = A051064(n) + 1.

A269503 Largest prime factor of A138148(n).

Original entry on oeis.org

101, 13, 137, 9091, 9901, 909091, 5882353, 52579, 333667, 9091, 99990001, 1058313049, 265371653, 909091, 2906161, 21993833369, 999999000001, 909090909090909091, 1111111111111111111, 909091, 1056689261, 549797184491917, 11111111111111111111111
Offset: 1

Views

Author

Altug Alkan, May 11 2016

Keywords

Comments

Largest prime factor of (10^(n+1)+1)*(10^n-1)/9.

Examples

			a(4) = 9091 because largest prime factor of 111101111 is 9091.
		

Crossrefs

Programs

  • Maple
    seq(max(max(numtheory:-factorset((10^n-1)/9)),
    max(numtheory:-factorset(10^(n+1)+1))), n=1..30); # Robert Israel, May 11 2016
  • PARI
    a006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    for(n=1, 25, print1(a006530((10^(2*n+1)-1)/9-10^n), ", "));

Formula

a(n) = max(A003020(n),A003021(n+1)) for n >= 2. - Robert Israel, May 11 2016

A385579 Smallest prime factor that the repunit(n) = (10^n-1)/9 shares with at least one other binary vector of the same length in base 10, or 1 if they are coprime.

Original entry on oeis.org

1, 1, 1, 1, 11, 1, 3, 1, 11, 3, 11, 1, 3, 53, 11, 3, 11, 1, 3, 1, 11, 3, 11, 1, 3, 41, 11, 3, 11, 3191, 3, 2791, 11, 3, 11, 41, 3, 2028119, 11, 3, 11, 83, 3, 173, 11, 3, 11, 35121409, 3, 239, 11, 3, 11, 107, 3, 41, 11, 3, 11
Offset: 0

Views

Author

Dmytro Inosov, Jul 03 2025

Keywords

Comments

a(n) is the smallest prime factor that divides both the decimal repunit (10^n-1)/9 and at least one other smaller decimal number consisting of only 0's and 1's.
a(n)=1 iff n is a term in A385537 (indices of repunits coprime with all other binary vectors of the same length).

Examples

			a(3) = 1 because 111 = 3*37 is coprime with all other nonzero binary vectors of length 3, which are 001, 010, 011, 100, 101, 110. None of them is divisible by 3 or 37.
a(4) = 11 because 11 is the smallest prime factor of 1111 which it shares, for example, with the binary vector 0011.
		

Crossrefs

Programs

  • Mathematica
    F[d_] := Min[Select[Table[Min[Transpose[FactorInteger[GCD[FromDigits[IntegerDigits[i,2]],(10^d-1)/9]]][[1]]], {i, 1, 2^d-2}], # > 1 &]];
    Table[If[# < \[Infinity], #, 1] &[F[n]], {n, 0, 25}]
  • PARI
    a(n) = my(x=(10^n-1)/9, m=oo, b=0, z); for (i=1, 2^n-2, my(y=fromdigits(binary(i))); if ((z=gcd(y, x)) != 1, b=1; m = min(m, vecmin(factor(z)[,1])); ); ); if (b, m, 1); \\ Michel Marcus, Jul 03 2025

Formula

If a(n) > 1, A067063(n) <= a(n) <= A003020(n).

A119761 Values n such that the largest prime factor of repunit R_n=(10^n -1)/9 is a unique prime,i.e.,whose reciprocal has unique decimal period length.

Original entry on oeis.org

2, 3, 4, 6, 9, 10, 12, 14, 18, 19, 23, 24, 36, 38, 39, 46, 48, 62, 78, 93, 96, 106, 120, 134, 150, 186, 196, 240, 268, 294, 300, 317, 320
Offset: 1

Views

Author

Lekraj Beedassy, Jun 18 2006

Keywords

Examples

			18 is in the sequence because R_18=3^2*7*11*13*19*37*52579*333667 and 333667 is the only prime with period 9: 1/333667 =0.000002997000002997...
		

Crossrefs

Extensions

Corrected and extended by Hans Havermann, Jun 22 2006
a(25)-a(33) from Ray Chandler, May 09 2017
Previous Showing 11-20 of 21 results. Next