cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 49 results. Next

A054869 Digits of an idempotent 6-adic number.

Original entry on oeis.org

3, 1, 2, 0, 5, 3, 1, 2, 2, 2, 5, 1, 5, 5, 1, 4, 1, 3, 1, 2, 5, 5, 5, 0, 5, 2, 5, 5, 5, 3, 1, 4, 3, 3, 0, 4, 2, 2, 4, 0, 1, 3, 3, 1, 4, 0, 2, 0, 1, 2, 5, 2, 4, 0, 2, 3, 3, 0, 3, 4, 5, 5, 2, 5, 5, 4, 3, 2, 3, 1, 5, 4, 5, 4, 0, 1, 1, 0, 4, 2, 0, 1, 3, 0, 1, 5, 0, 4, 3, 5, 0, 1, 0, 2, 4, 0, 3, 4, 2
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

( a(0) + a(1)*6 + a(2)*6^2 + ... )^k = a(0) + a(1)*6 + a(2)*6^2 + ... for each k. Apart from 0 and 1, in base 6 there are only 2 numbers with this property. For the other see A055620.

References

  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.

Crossrefs

The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.

Programs

  • Python
    n=10000;res=1-pow((3**n+1)//2,n,3**n)*2**n
    for i in range(n):print(i,res%6);res//=6
    # Kenny Lau, Jun 09 2018

Formula

a(n) == 3^(2^n) (mod 6^n). - Robert Dawson, Oct 28 2022

A201921 Automorphic numbers: n^2 ends with n in base 15 (written in base 10).

Original entry on oeis.org

0, 1, 6, 10, 100, 126, 1000, 2376, 4375, 46251, 156250, 603126, 3640626, 7750000, 19140625, 151718751, 835156251, 1727734375, 5960937501, 32482421875, 236621093751, 340029296875, 8413134765625, 60784912109376, 68961425781250, 709516601562501, 1236678466796875
Offset: 1

Views

Author

Martin Renner, Dec 06 2011

Keywords

Examples

			a(3) = 6 = (6)_15 since 6^2 = 36 = (26)_15 ends with 6 in base 15.
a(4) = 10 = (A)_15 since 10^2 = 100 = (6A)_15 ends with A in base 15.
a(5) = 100 = (6A)_15 since 100^2 = 10000 = (2E6A)_15 ends with 6A in base 15.
		

Crossrefs

Programs

Extensions

More terms from Eric M. Schmidt, Feb 09 2014

A201948 Automorphic numbers: n^2 ends with n in base 18 (written in base 10).

Original entry on oeis.org

0, 1, 9, 10, 81, 244, 729, 5104, 6561, 98416, 413344, 1476225, 9034497, 24977728, 263063296, 349156737, 2711943424, 8308017153, 96467701761, 101891588608, 1286623443969, 2283843782656, 30847581595648, 33420828483585, 352189631991808, 804641749434369
Offset: 1

Views

Author

Martin Renner, Dec 06 2011

Keywords

Examples

			a(3) = 9 = (9)_18 since 9^2 = 81 = (49)_18 ends with 9 in base 18.
a(4) = 10 = (A)_18 since 10^2 = 100 = (5A)_18 ends with A in base 18.
a(5) = 81 = (49)_18 since 81^2 = 6561 = (1249)_18 ends with 49 in base 18.
		

Crossrefs

Programs

Extensions

More terms from Eric M. Schmidt, Feb 09 2014

A306686 Values of n such that 9^n ends in n, or expomorphic numbers relative to "base" 9.

Original entry on oeis.org

9, 89, 289, 5289, 45289, 745289, 2745289, 92745289, 392745289, 7392745289, 97392745289, 597392745289, 7597392745289, 87597392745289, 8087597392745289, 48087597392745289, 748087597392745289, 10748087597392745289, 610748087597392745289, 5610748087597392745289
Offset: 1

Views

Author

Bernard Schott, Mar 05 2019

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial zeros) k(n) is expomorphic relative to base b (here 9) if k(n) has exactly n decimal digits and if b^k(n) == k(n) (mod 10^n) or, equivalently, b^k(n) ends in k(n). [See Crux Mathematicorum link.]
For sequences in the OEIS, no term is allowed to begin with a digit 0 (except for the 1-digit number 0 itself). However, in the problem as defined in the Crux Mathematicorum article, leading 0 digits are allowed; under that definition a(n) = k(n) until the first k(n) which begins with digit 0. When k(n) begins with 0, then, a(n) is the next term of the sequence k(n) which doesn't begin with digit 0.
Conjecture: if k(n) is expomorphic relative to "base" b, then, the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
a(n) is the backward concatenation of A133619(0) through A133619(n-1). So, a(1) = 9, a(2) = 89 and so on, with recognition of the former comments about the OEIS and terms beginning with 0. - Davis Smith, Mar 07 2019

Examples

			9^9 = 387420489 ends in 9, so 9 is a term; 9^89 = .....289 ends in 89, so 89 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A306570 (base 5), A290788 (base 6), A321970 (base 7), A289138 (smallest expomorphic number in base n).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133619 (leading digits).

Programs

  • PARI
    tetrmod(b, n, m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t
    for(n=1, 21,if(tetrmod(9,n,10^n)!=tetrmod(9,n-1,10^(n-1)),print1(tetrmod(9,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019

Extensions

a(8)-a(20) from Davis Smith, Mar 07 2019

A035383 Automorphic numbers: n ends with square root of n.

Original entry on oeis.org

0, 1, 25, 36, 625, 5776, 141376, 390625, 87909376, 8212890625, 11963109376, 793212890625, 8355712890625, 50543227109376, 166168212890625, 7588043387109376, 45322418212890625, 619541169787109376
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Subsequence of A000290. - Georg Fischer, Sep 03 2020

References

  • R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174.
  • V. de Guerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.

Crossrefs

Extensions

a(0)=0 added by Georg Fischer, Sep 03 2020

A062118 Numbers k such that k^2 has k as its middle digits.

Original entry on oeis.org

1, 50, 60, 250, 3792, 7600, 376000, 495475, 625000, 971582, 66952741, 93760000, 177656344, 3199268655, 9062500000, 10937600000, 788138178328, 860628177919, 890625000000, 2291665833333, 2780225311054, 2890625000000, 71093760000000, 128906250000000
Offset: 1

Views

Author

Brian Wallace (wallacebrianedward(AT)yahoo.co.uk), Jun 28 2001

Keywords

Comments

Some of the terms are automorphic numbers (A003226) multiplied by an appropriate power of 10. a(25) > 10^15. - Giovanni Resta, Jul 29 2013

Examples

			a(5)=3792 because 3792^2 = 14379264 has 3792 as its middle digits.
		

References

Crossrefs

k^2 is given in A062120.

Programs

  • Mathematica
    Do[ If[ StringPosition[ ToString[n^2], ToString[n]] [[1, 1]] == (Ceiling[ Log[10, n^2] ] - Ceiling[ Log[10, n] ])/2 + 1, Print[n] ], {n, 1, 10^9} ]

Extensions

Corrected and extended by Robert G. Wilson v, Aug 08 2001
a(15)-a(24) from Giovanni Resta, Jul 29 2013

A072495 Automorphic numbers: numbers k such that k^21 ends with k. Also m-morphic numbers for any m such that (m-1)/10 is an even integer not divisible by 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 39, 41, 43, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 61, 63, 64, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 81, 83, 84, 87, 88, 89, 91, 92, 93, 96, 97, 99, 101, 107, 125, 143
Offset: 1

Views

Author

Benoit Cloitre, Oct 19 2002

Keywords

Comments

Definition: k is an m-morphic number if k^m ends with k. For this sequence m can be 21, 41, 61, ...
3-morphic numbers = 7-morphic numbers, see A033819; 5-morphic numbers = 13-morphic numbers, see A068407.

Crossrefs

Programs

  • PARI
    isok(n, m=21)={n == 0 || (n^m)%(10^(1+logint(n,10))) == n}

Extensions

Missing terms inserted by Sean A. Irvine, Oct 05 2024

A113627 a(n) is the smallest number k such that k and 2^k have the same last n digits. Here k may have fewer than n digits and can be padded with leading zeros (cf. A121319).

Original entry on oeis.org

14, 36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 75353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736, 98615075353432948736
Offset: 1

Views

Author

Jon E. Schoenfield, Apr 23 2007

Keywords

Examples

			2^14 = 16384 and 14 end with the same single digit 4, thus a(1) = 14.
		

Crossrefs

See A121319, the main entry for this sequence, for further information.
Same as A109405 except for the initial term (14). - Max Alekseyev, May 11 2007

A121319 a(n) is the smallest number k such that k and 2^k have the same last n digits. Here k must have at least n digits (cf. A113627).

Original entry on oeis.org

14, 36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 1075353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736
Offset: 1

Views

Author

Tanya Khovanova, Aug 25 2006

Keywords

Examples

			2^14 = 16384 and 14 end with the same single digit 4, thus a(1) = 14.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = If[n == 1, 2, 10], m = 10^n}, While[ PowerMod[2, k, m] != Mod[k, m], k += 2]; k]; Do[ Print@f@n, {n, 9}] (* Robert G. Wilson v *)
  • PARI
    A121319(n) = { local(k,tn); tn=10^n ; forstep(k=2,1000000000,2, if ( k % tn == (2^k) % tn, return(k) ; ) ; ) ; return(0) ; } { for(n = 1,13, print( A121319(n)) ; ) ; } \\ R. J. Mathar, Aug 27 2006

Formula

If A109405(n) has n digits, a(n) = A109405(n), otherwise a(n) = A109405(n) + 10^n. - Max Alekseyev, May 05 2007

Extensions

a(6)-a(9) from Robert G. Wilson v and Jon E. Schoenfield, Aug 26 2006
a(10) from Robert G. Wilson v, Sep 26 2006
a(11)-a(16) from Alexander Adamchuk, Jan 28 2007
a(16) corrected by Max Alekseyev, Apr 12 2007

A306570 Values of n such that 5^n ends in n, or expomorphic numbers relative to "base" 5.

Original entry on oeis.org

5, 25, 125, 3125, 203125, 8203125, 408203125, 8408203125, 18408203125, 618408203125, 2618408203125, 52618408203125, 152618408203125, 3152618408203125, 93152618408203125, 493152618408203125, 7493152618408203125, 17493152618408203125, 117493152618408203125, 7117493152618408203125, 87117493152618408203125
Offset: 1

Views

Author

Bernard Schott, Feb 24 2019

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial zeros) k(n) is expomorphic relative to base b (here 5) if k(n) has exactly n decimal digits and if b^k(n) == k(n) (mod 10^n) or, equivalently, b^k(n) ends in k(n). [See Crux Mathematicorum link.]
For sequences in the OEIS, no term is allowed to begin with a digit 0 (except for the 1-digit number 0 itself). However, in the problem as defined in the Crux Mathematicorum article, leading 0 digits are allowed; under that definition a(n) = k(n) until the first k(n) which begins with digit 0. When k(n) begins with 0, then, a(n) is the next term of the sequence k(n) which doesn't begin with digit 0.
Under that definition, the term after a(4) = 3125 is not "03125" but a(5) = 203125. [Comments from Jon E. Schoenfield in A288845 and discussion with Rémy Sigrist]
Conjecture: if k(n) is expomorphic relative to "base" b, then, the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
a(n) is the backward concatenation of A133615(0) through A133615(n-1). So, a(1) is 5, a(2) is 25, and so on, with recognition of the comments about the OEIS and terms beginning with 0 (for example, when n = 5, A133615(n-1) = 0, so the next nonzero digit is concatenated as well, reducing the amount subtracted from n by 1). - Davis Smith Mar 07 2019

Examples

			5^5 = 25 ends in 5, so 5 is a term; 5^25 = ...125 ends in 25, so 25 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A290788 (base 6), A321970 (base 7), A306686 (base 9), A289138 (smallest expomorphic number in base n).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133615 (leading digits).

Programs

  • PARI
    is(n) = my(t=#digits(n)); lift(Mod(5, 10^t)^n)==n
    for(n=1, oo, my(x=n*5); if(lift(Mod(5, 10)^x)==x%10, if(is(x), print1(x, ", ")))) \\ Felix Fröhlich, Feb 24 2019
    
  • PARI
    tetrmod(b,n,m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t
    for(n=1, 21,if(tetrmod(5,n,10^n)!=tetrmod(5,n-1,10^(n-1)),print1(tetrmod(5,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019

Extensions

a(5)-a(7) from Felix Fröhlich, Feb 24 2019
a(8) from Michel Marcus, Mar 02 2019
a(9)-a(21) from Davis Smith, Mar 07 2019
Previous Showing 21-30 of 49 results. Next