A278994
Number of simple chord diagrams with n chords, modulo all symmetries.
Original entry on oeis.org
0, 1, 1, 4, 18, 116, 1060, 13019, 193425, 3313522, 63667788, 1351700744, 31390695708, 791372281393, 21523271532811, 628166776833181, 19582955637428422, 649472761243051940, 22833268501579122332, 848230375982060558217
Offset: 1
A306419
Number of set partitions of {1, ..., n} whose blocks are all singletons and pairs, not including {1, n} or {i, i + 1} for any i.
Original entry on oeis.org
1, 1, 1, 1, 4, 11, 32, 99, 326, 1123, 4064, 15291, 59924, 242945, 1019584, 4409233, 19648674, 89938705, 422744384, 2035739041, 10039057524, 50610247483, 260704414816, 1370387233859, 7346982653702, 40131663286851, 223238920709024, 1263531826402891, 7273434344119460
Offset: 0
The a(1) = 1 through a(5) = 11 set partitions:
{{1}} {{1}{2}} {{1}{2}{3}} {{13}{24}} {{1}{24}{35}}
{{1}{24}{3}} {{13}{24}{5}}
{{13}{2}{4}} {{13}{25}{4}}
{{1}{2}{3}{4}} {{14}{2}{35}}
{{14}{25}{3}}
{{1}{2}{35}{4}}
{{1}{24}{3}{5}}
{{1}{25}{3}{4}}
{{13}{2}{4}{5}}
{{14}{2}{3}{5}}
{{1}{2}{3}{4}{5}}
-
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[stableSets[Complement[Subsets[Range[n],{2}],Sort/@Partition[Range[n],2,1,1]],Intersection[#1,#2]!={}&]],{n,0,10}]
(* Second program: *)
CompoundExpression[
b[n_] := I^(1 - n) 2^((n - 1)/2) HypergeometricU[(1 - n)/2, 3/2, -1/2],
Join[{1, 1, 1}, Table[Sum[(-1)^k b[n - 2 k] n (n - 1 - k)!/(k! (n - 2 k)!), {k, 0, n/2}], {n, 3, 20}]]
] (* Eric W. Weisstein, Sep 02 2025 *)
-
\\ here b(n) is A000085(n)
b(n) = {sum(k=0, n\2, n!/((n-2*k)!*2^k*k!))}
a(n) = {if(n < 3, n >= 0, sum(k=0, n\2, (-1)^k*b(n-2*k)*n*(n-1-k)!/(k!*(n-2*k)!)))} \\ Andrew Howroyd, Aug 30 2019
A231622
(2*n+1)*a(n+1) = (4*n^2+1)*a(n) + (2*n+1)*a(n-1) with n>1, a(0)=2, a(1)=-1.
Original entry on oeis.org
2, -1, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0
G.f. = 2 - x + x^2 + 4*x^3 + 31*x^4 + 293*x^5 + 3326*x^6 + 44189*x^7 + ...
-
A231622 := n -> (-1)^n*2*hypergeom([n, -n], [], 1/2):
seq(simplify(A231622(n)),n=0..19); # Peter Luschny, Nov 10 2016
-
a[ n_] := With[{m = Abs@n}, Boole[m == 0] + (2*m - 1)!! Hypergeometric1F1[ -m, 1 - 2*m, -2]]
-
{a(n) = n=abs(n); if( n<2, 2 - 3*(n>0), ( a(n-1) * (4*n^2 - 8*n + 5) + a(n-2) * (2*n-1) ) / (2*n-3))}
A324445
Number of labeled cyclic chord diagrams with n chords such that the minimal chord length equals one.
Original entry on oeis.org
1, 2, 11, 74, 652, 7069, 90946, 1353554, 22870541, 432424178, 9044698456, 207336529399, 5168830168426, 139221843251594, 4028994710377547, 124670425690921634, 4107486007743301396, 143555848444786921189, 5304751937400100397626, 206646474536314180818218
Offset: 1
A324446
Number of labeled cyclic chord diagrams with n chords such that the minimal chord length equals two.
Original entry on oeis.org
1, 3, 24, 225, 2489, 32326, 483968, 8211543, 155740501, 3265307342, 74995101843, 1872508994356, 50500982610620, 1463062187672336, 45314261742435296, 1494164679669072424, 52257665502536426741, 1932255827699763531474, 75312621088768346098203
Offset: 2
A378862
Number of minimum edge covers in the n-cycle complement graph.
Original entry on oeis.org
0, 1, 5, 4, 70, 31, 972, 293, 14476, 3326, 237575, 44189, 4305960, 673471, 85836485, 11588884, 1871150248, 222304897
Offset: 3
A305402
A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)).
Original entry on oeis.org
1, 1, -2, 3, -4, 2, 15, -18, 9, -2, 105, -120, 60, -16, 2, 945, -1050, 525, -150, 25, -2, 10395, -11340, 5670, -1680, 315, -36, 2, 135135, -145530, 72765, -22050, 4410, -588, 49, -2, 2027025, -2162160, 1081080, -332640, 69300, -10080, 1008, -64, 2
Offset: 0
The first few terms of the Taylor expansion of f(u; p) are:
f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... )
The first few rows of the T(n, k) triangle are:
n=0: 1
n=1: 1, -2
n=2: 3, -4, 2
n=3: 15, -18, 9, -2
n=4: 105, -120, 60, -16, 2
n=5: 945, -1050, 525, -150, 25, -2
n=6: 10395, -11340, 5670, -1680, 315, -36, 2
- J. W. Goodman, Introduction to Fourier Optics, 1996.
- A. Papoulis, Systems and Transforms with Applications in Optics, 1968.
- Andrew Howroyd, Rows n=0..50 of triangle, flattened
- M. J. Bastiaans, The Wigner distribution function applied to optical signals and systems, Optics Communications, Vol. 25, nr. 1, pp. 26-30, 1978.
- H. J. Butterweck, General theory of linear, coherent optical data processing systems, Journal of the Optical Society of America, Vol. 67, nr. 1, pp. 60-70, 1977.
- J. W. Meijer, A note on optical diffraction, 1979.
-
[[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
-
T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8);
-
Table[If[n==0 && k==0,1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 08 2018 *)
-
T(n,k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018
A316531
a(n) is the maximum number of perfect matchings of a graph with 2n vertices that contains exactly three disjoint perfect matchings.
Original entry on oeis.org
3, 6, 9, 13, 20, 32, 52
Offset: 2
A320727
a(n) is the minimal number of perfect matchings of a graph with 2n vertices that contains exactly three disjoint perfect matchings.
Original entry on oeis.org
3, 4, 5, 6, 6, 8, 9
Offset: 2
Comments