cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A278994 Number of simple chord diagrams with n chords, modulo all symmetries.

Original entry on oeis.org

0, 1, 1, 4, 18, 116, 1060, 13019, 193425, 3313522, 63667788, 1351700744, 31390695708, 791372281393, 21523271532811, 628166776833181, 19582955637428422, 649472761243051940, 22833268501579122332, 848230375982060558217
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Crossrefs

A306419 Number of set partitions of {1, ..., n} whose blocks are all singletons and pairs, not including {1, n} or {i, i + 1} for any i.

Original entry on oeis.org

1, 1, 1, 1, 4, 11, 32, 99, 326, 1123, 4064, 15291, 59924, 242945, 1019584, 4409233, 19648674, 89938705, 422744384, 2035739041, 10039057524, 50610247483, 260704414816, 1370387233859, 7346982653702, 40131663286851, 223238920709024, 1263531826402891, 7273434344119460
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2019

Keywords

Comments

Also the number of spanning subgraphs of the complement of an n-cycle, with no overlapping edges.
I.e., for n >= 3, also the number of matchings in the complement of the cycle graph C_n. - Eric W. Weisstein, Sep 02 2025

Examples

			The a(1) = 1 through a(5) = 11 set partitions:
  {{1}}  {{1}{2}}  {{1}{2}{3}}  {{13}{24}}      {{1}{24}{35}}
                                {{1}{24}{3}}    {{13}{24}{5}}
                                {{13}{2}{4}}    {{13}{25}{4}}
                                {{1}{2}{3}{4}}  {{14}{2}{35}}
                                                {{14}{25}{3}}
                                                {{1}{2}{35}{4}}
                                                {{1}{24}{3}{5}}
                                                {{1}{25}{3}{4}}
                                                {{13}{2}{4}{5}}
                                                {{14}{2}{3}{5}}
                                                {{1}{2}{3}{4}{5}}
		

Crossrefs

Cf. A000085, A000110, A000296, A001006, A001610, A003436 (no singletons), A034807, A170941 (linear case), A278990 (linear case with no singletons), A306417.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Complement[Subsets[Range[n],{2}],Sort/@Partition[Range[n],2,1,1]],Intersection[#1,#2]!={}&]],{n,0,10}]
    (* Second program: *)
    CompoundExpression[
      b[n_] := I^(1 - n) 2^((n - 1)/2) HypergeometricU[(1 - n)/2, 3/2, -1/2],
      Join[{1, 1, 1}, Table[Sum[(-1)^k b[n - 2 k] n (n - 1 - k)!/(k! (n - 2 k)!), {k, 0, n/2}], {n, 3, 20}]]
    ] (* Eric W. Weisstein, Sep 02 2025 *)
  • PARI
    \\ here b(n) is A000085(n)
    b(n) = {sum(k=0, n\2, n!/((n-2*k)!*2^k*k!))}
    a(n) = {if(n < 3, n >= 0, sum(k=0, n\2, (-1)^k*b(n-2*k)*n*(n-1-k)!/(k!*(n-2*k)!)))} \\ Andrew Howroyd, Aug 30 2019

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*A034807(n, k)*A000085(n-2*k) for n > 2. - Andrew Howroyd, Aug 30 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 30 2019

A231622 (2*n+1)*a(n+1) = (4*n^2+1)*a(n) + (2*n+1)*a(n-1) with n>1, a(0)=2, a(1)=-1.

Original entry on oeis.org

2, -1, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0

Views

Author

Michael Somos, Nov 11 2013

Keywords

Examples

			G.f. = 2 - x + x^2 + 4*x^3 + 31*x^4 + 293*x^5 + 3326*x^6 + 44189*x^7 + ...
		

Crossrefs

Cf. A003436.

Programs

  • Maple
    A231622 := n -> (-1)^n*2*hypergeom([n, -n], [], 1/2):
    seq(simplify(A231622(n)),n=0..19); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[ n_] := With[{m = Abs@n}, Boole[m == 0] + (2*m - 1)!! Hypergeometric1F1[ -m, 1 - 2*m, -2]]
  • PARI
    {a(n) = n=abs(n); if( n<2, 2 - 3*(n>0), ( a(n-1) * (4*n^2 - 8*n + 5) + a(n-2) * (2*n-1) ) / (2*n-3))}

Formula

E.g.f. A(x) satisfies 0 = f(A(x), A'(x), A''(x)) where f(u0, u1, u2) = (3 + 2*x)*u0 + (5 + 2*x)*u1 + (-1 + 4*x^2)*u2.
a(-n) = a(n). a(n) = A003436(n) if n>1.
a(n) = (-1)^n*2*hypergeom([n, -n], [], 1/2). - Peter Luschny, Nov 10 2016

A324445 Number of labeled cyclic chord diagrams with n chords such that the minimal chord length equals one.

Original entry on oeis.org

1, 2, 11, 74, 652, 7069, 90946, 1353554, 22870541, 432424178, 9044698456, 207336529399, 5168830168426, 139221843251594, 4028994710377547, 124670425690921634, 4107486007743301396, 143555848444786921189, 5304751937400100397626, 206646474536314180818218
Offset: 1

Views

Author

Alois P. Heinz, Feb 28 2019

Keywords

Crossrefs

Column k=1 of A324429.

Formula

a(n) = A001147(n) - A003436(n).

A324446 Number of labeled cyclic chord diagrams with n chords such that the minimal chord length equals two.

Original entry on oeis.org

1, 3, 24, 225, 2489, 32326, 483968, 8211543, 155740501, 3265307342, 74995101843, 1872508994356, 50500982610620, 1463062187672336, 45314261742435296, 1494164679669072424, 52257665502536426741, 1932255827699763531474, 75312621088768346098203
Offset: 2

Views

Author

Alois P. Heinz, Feb 28 2019

Keywords

Crossrefs

Column k=2 of A324429.

Formula

a(n) = A003436(n) - A306386(n).

A378862 Number of minimum edge covers in the n-cycle complement graph.

Original entry on oeis.org

0, 1, 5, 4, 70, 31, 972, 293, 14476, 3326, 237575, 44189, 4305960, 673471, 85836485, 11588884, 1871150248, 222304897
Offset: 3

Views

Author

Eric W. Weisstein, Dec 09 2024

Keywords

Comments

For even n, the minimum edge covers are perfect matchings. - Andrew Howroyd, Dec 10 2024

Crossrefs

Formula

a(2*n) = A003436(n). - Andrew Howroyd, Dec 10 2024
a(2*n+1) = (n-1)*(2*n+1)*A278990(n). - Detlef Meya, Dec 12 2024

Extensions

a(10)-a(20) from Andrew Howroyd, Dec 10 2024

A305402 A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)).

Original entry on oeis.org

1, 1, -2, 3, -4, 2, 15, -18, 9, -2, 105, -120, 60, -16, 2, 945, -1050, 525, -150, 25, -2, 10395, -11340, 5670, -1680, 315, -36, 2, 135135, -145530, 72765, -22050, 4410, -588, 49, -2, 2027025, -2162160, 1081080, -332640, 69300, -10080, 1008, -64, 2
Offset: 0

Views

Author

Johannes W. Meijer, May 31 2018

Keywords

Comments

The function f(u, p) = (1/2)*(1+1/(sqrt(1-u^2))) * exp(p*sqrt(1-u^2)) was found while studying the Fresnel-Kirchhoff and the Rayleigh-Sommerfeld theories of diffraction, see the Meijer link.
The Taylor expansion of f(u, p) leads to the number triangle T(n, k), see the example section.
Normalization of the triangle terms, dividing the T(n, k) by T(n-k, 0), leads to A084534.
The row sums equal A003436, n >= 2, respectively A231622, n >= 1.

Examples

			The first few terms of the Taylor expansion of f(u; p) are:
f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... )
The first few rows of the T(n, k) triangle are:
n=0:     1
n=1:     1,     -2
n=2:     3,     -4,    2
n=3:    15,    -18,    9,    -2
n=4:   105,   -120,   60,   -16,   2
n=5:   945,  -1050,  525,  -150,  25,  -2
n=6: 10395, -11340, 5670, -1680, 315, -36, 2
		

References

  • J. W. Goodman, Introduction to Fourier Optics, 1996.
  • A. Papoulis, Systems and Transforms with Applications in Optics, 1968.

Crossrefs

Cf. Related to the left hand columns: A001147, A001193, A261065.
Cf. Related to the right hand columns: A280560, A162395, A006011, A040977, A053347, A054334, A266561.

Programs

  • Magma
    [[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
  • Maple
    T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8);
  • Mathematica
    Table[If[n==0 && k==0,1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    T(n,k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018
    

Formula

T(n, k) = (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!), n > 0 and 0 <= k <= n, T(0, 0) = 1.
T(n, k) = (-1)^k*A001147(n-k)*A084534(n, k), n >= 0 and 0 <= k <= n.
T(n, k) = 2^(2*(k-n)+1)*A001147(n-k)*A127674(n, n-k), n > 0 and 0 <= k <= n, T(0, 0) = 1.
T(n, k) = (-1)^k*(A001497(n, k) + A132062(n, k)), n >= 1, T(0,0) = 1.

A316531 a(n) is the maximum number of perfect matchings of a graph with 2n vertices that contains exactly three disjoint perfect matchings.

Original entry on oeis.org

3, 6, 9, 13, 20, 32, 52
Offset: 2

Views

Author

Mario Krenn, Oct 20 2018

Keywords

Comments

Take a cycle graph which has two perfect matchings (PM), and add one PM that is disjoint to it. The number of possible PMs one can add is given by A003436. One ends up with a set of three disjoint perfect matchings (where disjoint means that each edge is an element of maximally one PM), but the graph will have more PMs. This sequence describes the maximum number of PMs that such a graph can have.

Crossrefs

Cf. A003436.

Extensions

a(8) from Mario Krenn, Jul 20 2024

A320727 a(n) is the minimal number of perfect matchings of a graph with 2n vertices that contains exactly three disjoint perfect matchings.

Original entry on oeis.org

3, 4, 5, 6, 6, 8, 9
Offset: 2

Views

Author

Mario Krenn, Oct 20 2018

Keywords

Comments

Take a cycle graph which has two perfect matchings (PM), and add one PM that is disjoint to it. The number of possible PMs one can add is given by A003436. One ends up with a set of three disjoint perfect matchings (where disjoint means that each edge is an element of maximally one PM), but the graph will have more PMs. This sequence describes the minimal number of PMs that such a graph can have.

Crossrefs

Cf. A003436.

Extensions

a(8) from Mario Krenn, Jul 20 2024
Previous Showing 21-29 of 29 results.