A017899
Expansion of 1/(1 -x^5 -x^6 -x^7 - ...).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 34, 45, 60, 80, 106, 140, 185, 245, 325, 431, 571, 756, 1001, 1326, 1757, 2328, 3084, 4085, 5411, 7168, 9496, 12580, 16665, 22076, 29244, 38740, 51320, 67985, 90061, 119305, 158045, 209365, 277350
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- J. Hermes, Anzahl der Zerlegungen einer ganzen rationalen Zahl in Summanden, Math. Ann., 45 (1894), 371-380.
- Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
- J. D. Opdyke, A unified approach to algorithms generating unrestricted.., J. Math. Model. Algor. 9 (2010) 53-97.
- Ethan P. White, Richard K. Guy, Renate Scheidler, Difference Necklaces, arXiv:2006.15250 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1).
Apart from initial terms, same as
A003520.
-
f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
a:= n-> (Matrix(5, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 0$3, 1][i] else 0 fi)^n)[5,5]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 04 2008
-
CoefficientList[ Series[(1 - x)/(1 - x - x^5), {x, 0, 50}], x] (* Adi Dani, Jun 25 2011 *)
LinearRecurrence[{1,0,0,0,1},{1,0,0,0,0},60] (* Harvey P. Dale, Jun 07 2015 *)
-
Vec((1-x)/(1-x-x^5)+O(x^99)) \\ Charles R Greathouse IV, Jun 21 2011
A264878
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 0,1 0,-1 -2,0 or 1,1.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 5, 0, 3, 0, 7, 4, 20, 0, 4, 1, 20, 65, 12, 56, 0, 5, 0, 49, 228, 572, 36, 137, 0, 6, 1, 175, 1101, 2348, 3613, 108, 295, 0, 8, 0, 323, 4832, 22152, 22400, 19372, 324, 709, 0, 11, 1, 1085, 18501, 129230, 356692, 207424, 103585, 972, 1983, 0
Offset: 1
Some solutions for n=4 k=4
..1..2..3..4.14...10..2.12..4.14....1..2.12..4.14...10..2..3..4.14
.15..0..8..9.19....6..0..1..9..3...15..0..8..9..3....6..0..1..9.19
.20..5..6..7.24...20..5.22..7..8...20..5..6..7.24...20..5.22..7..8
.16.10.11.12.13...16.17.11.19.13...16.10.11.19.13...16.17.11.12.13
.21.22.23.17.18...21.15.23.24.18...21.22.23.17.18...21.15.23.24.18
A278657
Number A(n,k) of tilings of a k X n rectangle using pentominoes of any shape and monominoes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 1, 1, 1, 2, 25, 50, 25, 2, 1, 1, 3, 50, 311, 311, 50, 3, 1, 1, 4, 155, 1954, 4101, 1954, 155, 4, 1, 1, 5, 508, 11914, 56864, 56864, 11914, 508, 5, 1, 1, 6, 1343, 76003, 728857, 1532496, 728857, 76003, 1343, 6, 1
Offset: 0
A(2,3) = A(3,2) = 7:
.___. .___. .___. .___. .___. .___. .___.
|_|_| | | | | | |_| |_| | | ._| |_. |
|_|_| | ._| |_. | | | | | | |_| |_| |
|_|_| |_|_| |_|_| |___| |___| |___| |___| .
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 2, 3, ...
1, 1, 1, 7, 25, 50, 155, ...
1, 1, 7, 50, 311, 1954, 11914, ...
1, 1, 25, 311, 4101, 56864, 728857, ...
1, 2, 50, 1954, 56864, 1532496, 42238426, ...
1, 3, 155, 11914, 728857, 42238426, 2492016728, ...
A014097
a(n) = a(n-1)+a(n-4).
Original entry on oeis.org
1, 1, 1, 5, 6, 7, 8, 13, 19, 26, 34, 47, 66, 92, 126, 173, 239, 331, 457, 630, 869, 1200, 1657, 2287, 3156, 4356, 6013, 8300, 11456, 15812, 21825, 30125, 41581, 57393, 79218, 109343, 150924, 208317, 287535
Offset: 1
- Indranil Ghosh, Table of n, a(n) for n = 1..7130
- D. J. Broadhurst, Conjectured enumeration of irreducible multiple zeta values, from knots and Feynman diagrams, arXiv:hep-th/9612012, 1996.
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1).
-
LinearRecurrence[{1,0,0,1},{1,1,1,5},40] (* Harvey P. Dale, Mar 06 2016 *)
-
a(n):=sum(binomial(n-3*j,n-4*j)*n/(n-3*j),j,0,(n-1)/3); /* Vladimir Kruchinin, Mar 25 2016 */
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,0,1]^(n-1)*[1;1;1;5])[1,1] \\ Charles R Greathouse IV, Sep 09 2016
Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
A079675
a(1)=1; a(n)=sum(u=1,n-1,sum(v=1,u,sum(w=1,v,sum(x=1, w,sum(y=1,x,a(y)))))).
Original entry on oeis.org
1, 1, 6, 26, 106, 431, 1757, 7168, 29244, 119305, 486716, 1985603, 8100456, 33046585, 134816705, 549997641, 2243767969, 9153665985, 37343255690, 152345382480, 621507555626, 2535499503900, 10343812679475, 42198572937400
Offset: 1
- Michael De Vlieger, Table of n, a(n) for n = 1..1639
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 16.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Index entries for linear recurrences with constant coefficients, signature (6,-10,10,-5,1).
-
LinearRecurrence[{6,-10,10,-5,1},{1,1,6,26,106,431},40] (* Harvey P. Dale, Aug 21 2017 *)
A058368
Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 5 sites wide.
Original entry on oeis.org
1, 1, 1, 1, 6, 7, 8, 9, 10, 16, 23, 31, 40, 50, 66, 89, 120, 160, 210, 276, 365, 485, 645, 855, 1131, 1496, 1981, 2626, 3481, 4612, 6108, 8089, 10715, 14196, 18808, 24916, 33005, 43720, 57916, 76724, 101640, 134645, 178365, 236281, 313005, 414645
Offset: 1
Yong Kong (ykong(AT)curagen.com), Dec 17 2000
a(5) = 6 because there is one way to put zero molecule to the necklace and 5 ways to put one molecule.
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1).
-
LinearRecurrence[{1,0,0,0,1},{1,1,1,1,6},50] (* Harvey P. Dale, Aug 14 2020 *)
A058364
Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 9 sites wide.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 28, 39, 51, 64, 78, 93, 109, 126, 144, 172, 211, 262, 326, 404, 497, 606, 732, 876, 1048, 1259, 1521, 1847, 2251, 2748, 3354, 4086, 4962, 6010, 7269, 8790, 10637, 12888, 15636, 18990, 23076, 28038
Offset: 1
Yong Kong (ykong(AT)curagen.com), Dec 17 2000
a(9) = 10 because there is one way to put zero molecule to the necklace and 9 ways to put one molecule.
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799.
A058365
Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 8 sites wide.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 9, 10, 11, 12, 13, 14, 15, 16, 25, 35, 46, 58, 71, 85, 100, 116, 141, 176, 222, 280, 351, 436, 536, 652, 793, 969, 1191, 1471, 1822, 2258, 2794, 3446, 4239, 5208, 6399, 7870, 9692, 11950, 14744, 18190, 22429, 27637, 34036, 41906
Offset: 1
Yong Kong (ykong(AT)curagen.com), Dec 17 2000
a(8) = 9 because there is one way to put zero molecule to the necklace and 8 ways to put one molecule.
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799.
A058366
Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 7 sites wide.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 8, 9, 10, 11, 12, 13, 14, 22, 31, 41, 52, 64, 77, 91, 113, 144, 185, 237, 301, 378, 469, 582, 726, 911, 1148, 1449, 1827, 2296, 2878, 3604, 4515, 5663, 7112, 8939, 11235, 14113, 17717, 22232, 27895, 35007, 43946, 55181, 69294, 87011
Offset: 1
Yong Kong (ykong(AT)curagen.com), Dec 17 2000
a(7) = 8 because there is one way to put zero molecule to the necklace and 7 ways to put one molecule.
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799.
A058367
Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 6 sites wide.
Original entry on oeis.org
1, 1, 1, 1, 1, 7, 8, 9, 10, 11, 12, 19, 27, 36, 46, 57, 69, 88, 115, 151, 197, 254, 323, 411, 526, 677, 874, 1128, 1451, 1862, 2388, 3065, 3939, 5067, 6518, 8380, 10768, 13833, 17772, 22839, 29357, 37737, 48505, 62338, 80110, 102949, 132306, 170043, 218548
Offset: 1
Yong Kong (ykong(AT)curagen.com), Dec 17 2000
a(6) = 7 because there is one way to put zero molecule to the necklace and 6 ways to put one molecule.
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799.
Comments