cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A003520 a(n) = a(n-1) + a(n-5); a(0) = ... = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 34, 45, 60, 80, 106, 140, 185, 245, 325, 431, 571, 756, 1001, 1326, 1757, 2328, 3084, 4085, 5411, 7168, 9496, 12580, 16665, 22076, 29244, 38740, 51320, 67985, 90061, 119305, 158045, 209365, 277350, 367411, 486716, 644761
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0..m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
Also counts ordered partitions such that no part is less than 5. For example, a(12) = a(11) + a(7) where a(7) counts 11,6+5 and 5+6 and a(11) counts 15,10+5, 9+6,8+7,7+8,6+9,5+10 and 5+5+5. Thus a(12) = 3 + 8 = 11. a(12) counts 16,11+5,10+6,9+7,8+8,7+9,6+10 and 6+5+5 but also 5+11,5+6+5 and 5+5+6. Similar results hold for the other sequences formed by a(n) = a(n-1) + a(n-k). - Alford Arnold, Aug 06 2003
Number of compositions of n into parts 1 and 5. - Joerg Arndt, Jun 25 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=5, 2*a(n-5) equals the number of 2-colored compositions of n with all parts >= 5, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
a(n+4) equals the number of binary words of length n having at least 4 zeros between every two successive ones. - Milan Janjic, Feb 07 2015
Number of tilings of a 5 X n rectangle with 5 X 1 pentominoes. - M. Poyraz Torcuk, Mar 26 2022

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 119.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial terms, same as A017899.

Programs

  • Maple
    a[0]:=1:a[1]:=1:a[2]:=1:a[3]:=1:a[4]:=1:for n from 5 to 60 do a[n]:=a[n-1]+a[n-5] od:seq(a[n],n=0..60);
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 4)}, unlabeled]: seq(count(SeqSetU, size=j), j=5..55); # Zerinvary Lajos, Oct 10 2006
    A003520:=-1/(z**3+z**2-1)/(z**2-z+1); # Simon Plouffe in his 1992 dissertation
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 4)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=4..54); # Zerinvary Lajos, Mar 26 2008
    M := Matrix(5, (i,j)-> if j=1 then [1, 0, 0, 0, 1][i] elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    a[0] = a[1] = a[2] = a[3] = a[4] = 1; a[n_] := a[n] = a[n - 1] + a[n - 5]; Table[ a[n], {n, 0, 49}] (* Robert G. Wilson v, Dec 09 2004 *)
    CoefficientList[Series[1/(1 - x - x^5), {x, 0, 51}], x] (* Zerinvary Lajos, Mar 29 2007 *)
    LinearRecurrence[{1, 0, 0, 0, 1}, {1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,e+a}; NestList[nxt,{1,1,1,1,1},50][[;;,1]] (* Harvey P. Dale, Sep 27 2023 *)
  • Maxima
    a(n):=sum(binomial(n-1+(-4)*j,j),j,0,(n-1)/4); /* Vladimir Kruchinin, May 23 2011 */
    
  • PARI
    my(x='x+O('x^66)); Vec(x/(1-(x+x^5))) /* Joerg Arndt, Jun 25 2011 */

Formula

G.f.: 1/(1-x-x^5) = 1/((1-x+x^2)(1-x^2-x^3)).
a(n) = Sum_{j=0..(n-1)/4} binomial(n-1+(-4)*j,j).
For n>5, a(n) = floor( d*c^n + 1/2) where c is the positive real root of x^5-x^4-1 and d is the positive real root of 161*x^3-23*x^2-12*x-1 ( c=1.32471795724474602... and d=0.3811571478326847...) - Benoit Cloitre, Nov 30 2002
a(n) = term (1,1) in the 5 X 5 matrix [1,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,0,0,0]^n. - Alois P. Heinz, Jul 27 2008
For positive integers n and k such that k <= n <= 5*k, and 4 divides n-k, define c(n,k) = binomial(k,(n-k)/4), and c(n,k)=0, otherwise. Then, for n >= 1, a(n) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([-1/5*n, 1/5-1/5*n, 2/5-1/5*n, 3/5-1/5*n, 4/5-1/5*n], [-1/4*n, 1/4-1/4*n, 1/2-1/4*n, 3/4-1/4*n], -5^5/4^4) for n>=16. - Peter Luschny, Sep 18 2014
7*a(n) = A117373(n+4) +5*b(n) +4*b(n-1) +b(n-2) where b(n) = A182097(n). - R. J. Mathar, Aug 07 2017

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A017898 Expansion of (1-x)/(1-x-x^4).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 345, 476, 657, 907, 1252, 1728, 2385, 3292, 4544, 6272, 8657, 11949, 16493, 22765, 31422, 43371, 59864, 82629, 114051, 157422, 217286, 299915, 413966, 571388, 788674
Offset: 0

Views

Author

Keywords

Comments

A Lamé sequence of higher order.
Essentially the same as A003269, which has much more information.
Number of compositions of n into parts >= 4. - Joerg Arndt, Aug 13 2012

Crossrefs

For Lamé sequences of orders 1 through 9 see A000045, A000930, this one, and A017899-A017904.

Programs

  • Maple
    f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
    a:= n-> (Matrix(4, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 0$2, 1][i] else 0 fi)^n)[4,4]: seq(a(n), n=0..42); # Alois P. Heinz, Aug 04 2008
  • Mathematica
    LinearRecurrence[{1, 0, 0, 1}, {1, 0, 0, 0}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    CoefficientList[Series[(1-x)/(1-x-x^4),{x,0,50}],x] (* Harvey P. Dale, Sep 12 2019 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,0,1]^n*[1;0;0;0])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = a(n-1) + a(n-4). - R. J. Mathar, Mar 06 2008
G.f.: 1/(1-sum(k>=4, x^k)). - Joerg Arndt, Aug 13 2012
Apparently a(n) = hypergeometric([1-1/4*n, 5/4-1/4*n, 3/2-1/4*n, 7/4-1/4*n],[4/3-1/3*n, 5/3-1/3*n, 2-1/3*n], -4^4/3^3) for n>=13. - Peter Luschny, Sep 18 2014
a(n) = A003269(n+1)-A003269(n). - R. J. Mathar, Jun 10 2018

A339103 Number of compositions (ordered partitions) of n into distinct parts >= 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 15, 17, 23, 31, 37, 45, 57, 65, 101, 115, 151, 189, 255, 293, 383, 451, 565, 777, 921, 1157, 1469, 1855, 2311, 2865, 3495, 4313, 5231, 7063, 8269, 10509, 12849, 16217, 19829, 25171, 30031, 37485, 45183
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2020

Keywords

Examples

			a(11) = 3 because we have [11], [6, 5] and [5, 6].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(n=0, p!, `if`((i-4)*(i+5)/2 b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 23 2020
  • Mathematica
    nmax = 54; CoefficientList[Series[Sum[k! x^(k (k + 9)/2)/Product[1 - x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(k + 9)/2) / Product_{j=1..k} (1 - x^j).

A141539 Square array A(n,k) of numbers of length n binary words with at least k "0" between any two "1" digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 3, 5, 16, 1, 2, 3, 4, 8, 32, 1, 2, 3, 4, 6, 13, 64, 1, 2, 3, 4, 5, 9, 21, 128, 1, 2, 3, 4, 5, 7, 13, 34, 256, 1, 2, 3, 4, 5, 6, 10, 19, 55, 512, 1, 2, 3, 4, 5, 6, 8, 14, 28, 89, 1024, 1, 2, 3, 4, 5, 6, 7, 11, 19, 41, 144, 2048, 1, 2, 3, 4, 5, 6, 7, 9, 15, 26, 60, 233, 4096
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2008

Keywords

Comments

A(n,k+1) = A(n,k) - A143291(n,k).
From Gary W. Adamson, Dec 19 2009: (Start)
Alternative method generated from variants of an infinite lower triangle T(n) = A000012 = (1; 1,1; 1,1,1; ...) such that T(n) has the leftmost column shifted up n times. Then take lim_{k->infinity} T(n)^k, obtaining a left-shifted vector considered as rows of an array (deleting the first 1) as follows:
1, 2, 4, 8, 16, 32, 64, 128, 256, ... = powers of 2
1, 1, 2, 3, 5, 8, 13, 21, 34, ... = Fibonacci numbers
1, 1, 1, 2, 3, 4, 6, 9, 13, ... = A000930
1, 1, 1, 1, 2, 3, 4, 5, 7, ... = A003269
... with the next rows A003520, A005708, A005709, ... such that beginning with the Fibonacci row, the succession of rows are recursive sequences generated from a(n) = a(n-1) + a(n-2); a(n) = a(n-1) + a(n-3), ... a(n) = a(n-1) + a(n-k); k = 2,3,4,... Last, columns going up from the topmost 1 become rows of triangle A141539. (End)

Examples

			A(4,2) = 6, because 6 binary words of length 4 have at least 2 "0" between any two "1" digits: 0000, 0001, 0010, 0100, 1000, 1001.
Square array A(n,k) begins:
    1,  1,  1,  1,  1,  1,  1,  1, ...
    2,  2,  2,  2,  2,  2,  2,  2, ...
    4,  3,  3,  3,  3,  3,  3,  3, ...
    8,  5,  4,  4,  4,  4,  4,  4, ...
   16,  8,  6,  5,  5,  5,  5,  5, ...
   32, 13,  9,  7,  6,  6,  6,  6, ...
   64, 21, 13, 10,  8,  7,  7,  7, ...
  128, 34, 19, 14, 11,  9,  8,  8, ...
		

Crossrefs

Cf. column k=0: A000079, k=1: A000045(n+2), k=2: A000930(n+2), A068921, A078012(n+5), k=3: A003269(n+4), A017898(n+7), k=4: A003520(n+4), A017899(n+9), k=5: A005708(n+5), A017900(n+11), k=6: A005709(n+6), A017901(n+13), k=7: A005710(n+7), A017902(n+15), k=8: A005711(n+7), A017903(n+17), k=9: A017904(n+19), k=10: A017905(n+21), k=11: A017906(n+23), k=12: A017907(n+25), k=13: A017908(n+27), k=14: A017909(n+29).
Main diagonal gives A000027(n+1).
A(2n,n) gives A000217(n+1)
A(3n,n) gives A008778.
A(3n,2n) gives A034856(n+1).
A(2n,3n) gives A005408.
A(2^n-1,n) gives A376697.
See also A143291.

Programs

  • Maple
    A:= proc(n, k) option remember;
          if k=0 then 2^n
        elif n<=k and n>=0 then n+1
        elif n>0 then A(n-1, k) +A(n-k-1, k)
        else          A(n+1+k, k) -A(n+k, k)
          fi
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    a[n_, k_] := a[n, k] = Which[k == 0, 2^n, n <= k && n >= 0, n+1, n > 0, a[n-1, k] + a[n-k-1, k], True, a[n+1+k, k] - a[n+k, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

Formula

G.f. of column k: x^(-k)/(1-x-x^(k+1)).
A(n,k) = 2^n if k=0, otherwise A(n,k) = n+1 if n<=k, otherwise A(n,k) = A(n-1,k) + A(n-k-1,k).

A371212 Number of ordered factorizations of n into factors > 4.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 2, 3, 1, 1, 1, 3, 3, 3, 1, 1, 1, 5, 1, 1, 3, 2, 3, 3, 1, 1, 1, 5, 1, 5, 1, 1, 3, 1, 3, 3, 1, 5, 2, 1, 1, 5, 3, 1, 1, 3, 1, 7, 3, 1, 1, 1, 3, 5, 1, 3, 3, 4, 1, 3, 1, 3, 5, 1, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 15 2024

Keywords

Examples

			a(30) = 3: 30 = 5*6 = 6*5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 1, n, Sum[If[n/d > 4, a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 92}]
  • PARI
    memoA371212 = Map();
    A371212(n) = if(1==n,1,my(v); if(mapisdefined(memoA371212,n,&v), v, v = sumdiv(n,d,if((n/d)<=4, 0, A371212(d))); mapput(memoA371212,n,v); (v))); \\ Antti Karttunen, Jan 16 2025

Formula

a(1) = 1; a(n) = Sum_{d|n, n/d > 4} a(d).

Extensions

More terms from Antti Karttunen, Jan 16 2025

A017901 Expansion of 1/(1 - x^7 - x^8 - ...).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 53, 66, 83, 105, 133, 168, 211, 264, 330, 413, 518, 651, 819, 1030, 1294, 1624, 2037, 2555, 3206, 4025, 5055, 6349, 7973, 10010, 12565, 15771, 19796, 24851, 31200, 39173
Offset: 0

Views

Author

Keywords

Comments

A Lamé sequence of higher order.
a(n) = number of compositions of n in which each part is >= 7. - Milan Janjic, Jun 28 2010
a(n+7) equals the number of n-length binary words such that 0 appears only in a run length that is a multiple of 7. - Milan Janjic, Feb 17 2015
A017847(n) = |a(-n)| for n>=0. - Michael Somos, Oct 28 2018

Examples

			G.f. = 1 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + 2*x^14 + ... - _Michael Somos_, Oct 28 2018
		

Crossrefs

For Lamé sequences of orders 1 through 9 see A000045, A000930, A017898, A017899, A017900, A017901, A017902, A017903, A017904.

Programs

  • Maple
    f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
    a := n -> (Matrix(7, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 0$5, 1][i] else 0 fi)^n)[7,7]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 04 2008
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,1}, {1,0,0,0,0,0,0}, 60] (* Jean-François Alcover, Mar 28 2017 *)
  • PARI
    Vec((x-1)/(x-1+x^7)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    {a(n) = if( n < 0, polcoeff( 1 / (1 + x^6 - x^7) + x * O(x^-n), -n), polcoeff( (1 - x) / (1 - x - x^7) + x * O(x^n), n))}; /* Michael Somos, Oct 28 2018 */

Formula

G.f.: (x-1)/(x-1+x^7). - Alois P. Heinz, Aug 04 2008
For positive integers n and k such that k <= n <= 7*k, and 6 divides n-k, define c(n,k) = binomial(k,(n-k)/6), and c(n,k) = 0, otherwise. Then, for n>=1, a(n+7) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011
a(n) = A005709(n) - A005709(n-1). - R. J. Mathar, Sep 07 2016
0 == a(n) + a(n+6) - a(n+7) for all n in Z. - Michael Somos, Oct 28 2018

A371245 Number of factorizations of n into factors > 4.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 3, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 1, 3, 2, 1, 1, 2, 1, 4, 2, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 16 2024

Keywords

Examples

			a(60) = 3: 60 = 5*12 = 6*10.
		

Crossrefs

Programs

Formula

Dirichlet g.f.: Product_{k>=5} 1 / (1 - k^(-s)).

A174469 Number of permutations p of {1,...,n} satisfying p(1)=1 and, if n>1, |p(i)-p((i mod n)+1)| is in {2,3} for i from 1 to n.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 4, 6, 8, 10, 12, 16, 22, 30, 40, 52, 68, 90, 120, 160, 212, 280, 370, 490, 650, 862, 1142, 1512, 2002, 2652, 3514, 4656, 6168, 8170, 10822, 14336, 18992, 25160, 33330, 44152, 58488, 77480, 102640, 135970
Offset: 1

Views

Author

Alois P. Heinz, Nov 28 2010

Keywords

Comments

Also the number of directed Hamiltonian cycles in the graph on n vertices {1,...,n}, with i adjacent to j iff 2 <= |i-j| <= 3.

Examples

			For n = 10 the a(10) = 2 permutations are (1,3,6,9,7,10,8,5,2,4), (1,4,2,5,8,10,7,9,6,3).
		

Crossrefs

Cf. A017899.

Programs

  • Maple
    a:= n-> `if`(n<2, n, (Matrix (5, (i,j)-> `if`(j-i=1 or i=5 and j in {1,5}, 1, 0))^n. <<2, -2, (0$3)>>)[1,1]): seq(a(n), n=1..60);
  • Mathematica
    Join[{1}, LinearRecurrence[{1, 0, 0, 0, 1}, {0, 0, 0, 2, 0}, 60]] (* Jean-François Alcover, Oct 28 2021 *)

Formula

G.f.: (3*x^5-2*x^4+x-1)*x / (x^5+x-1).
a(n) = 2*A017899(n-5) for n>=5.

A366112 Expansion of (1/x) * Series_Reversion( x*(1-x-x^5)/(1-x) ).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 7, 14, 22, 31, 41, 103, 235, 457, 791, 1261, 2399, 5015, 10257, 19676, 35296, 65170, 127520, 256187, 507601, 969495, 1834433, 3534477, 6962249, 13809538, 27061252, 52439361, 101701035, 199152071, 393332277, 776589611, 1525416837
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[x*(1-x-x^5)/(1-x),{x,0,41}]]/x,x] (* Stefano Spezia, Aug 21 2025 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n+k, k)*binomial(n-4*k-1, n-5*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n+k,k) * binomial(n-4*k-1,n-5*k).

A052627 E.g.f. (1-x)/(1-x-x^5).

Original entry on oeis.org

1, 0, 0, 0, 0, 120, 720, 5040, 40320, 362880, 7257600, 119750400, 1916006400, 31135104000, 523069747200, 10461394944000, 230150688768000, 5335311421440000, 128047474114560000, 3162772610629632000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Z,Z,Z,Z,Z,Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-x)/(1-x-x^5),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 12 2018 *)

Formula

E.g.f.: (-1+x)/(-1+x^5+x)
Recurrence: {a(1)=0, a(0)=1, a(2)=0, a(4)=0, a(3)=0, (-n^5-15*n^4-274*n-120-85*n^3-225*n^2)*a(n) +(-5-n)*a(n+4) +a(n+5)=0}
Sum(-1/3381*(64+80*_alpha^4+100*_alpha^3+125*_alpha^2-689*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z^5+_Z))*n!
a(n)=n!*A017899(n). - R. J. Mathar, Jun 03 2022
Showing 1-10 of 11 results. Next