cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A051834 Fibonacci(Pn-1) mod Pn, where Pn is the n-th prime.

Original entry on oeis.org

1, 1, 3, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Jud McCranie, Dec 11 1999

Keywords

Comments

Terms are 0 when Pn == 1 or 4 mod 5, terms are 1 when Pn == 2 or 3 mod 5.

Examples

			P3=5, Fibonacci(5-1)=3 mod 5.
		

Crossrefs

A106284 Primes p such that the polynomial x^5-x^4-x^3-x^2-x-1 mod p has no zeros.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 31, 37, 41, 53, 71, 79, 83, 107, 151, 157, 199, 229, 233, 239, 241, 257, 263, 277, 281, 311, 317, 331, 337, 379, 389, 409, 431, 433, 463, 467, 521, 523, 541, 547, 557, 563, 571, 577, 607, 631, 659, 677, 727, 769, 787, 809, 827, 839, 853
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 5-step sequences, A001591 and A074048.

Crossrefs

Cf. A106278 (number of distinct zeros of x^5-x^4-x^3-x^2-x-1 mod prime(n)), A106298, A106304 (period of Lucas and Fibonacci 5-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible mod p).

Programs

  • Maple
    P:= x^5-x^4-x^3-x^2-x-1:
    select(p -> [msolve(P,p)] = [], [seq(ithprime(i),i=1..10000)]); # Robert Israel, Mar 13 2024
  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
  • Python
    from itertools import islice
    from sympy import Poly, nextprime
    from sympy.abc import x
    def A106284_gen(): # generator of terms
        from sympy.abc import x
        p = 2
        while True:
            if len(Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=p).ground_roots())==0:
                yield p
            p = nextprime(p)
    A106284_list = list(islice(A106284_gen(),20)) # Chai Wah Wu, Mar 14 2024

Extensions

Name corrected by Robert Israel, Mar 13 2024

A128289 Composite terms in A128288(n) = A023163(n)/3 for n>1.

Original entry on oeis.org

1853, 9701, 10877, 17261, 23323, 27403, 75077, 80189, 113573, 120581, 161027, 162133, 163059, 196877, 213749, 291941, 361397, 400987, 427549, 482677, 635627, 667589, 941291, 1030373, 1033997, 1140701, 1196061, 1256293, 1751747, 1816363, 1842581, 2288453, 2662277
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

3 divides A023163(n) for n>1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n).
Almost all terms of A128288 are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} Primes congruent to {2, 3} mod 5; that are also the primes p that divide Fibonacci(p+1).
a(3) = 10877 = 73*149 belongs to A069107 Composite n such that n divides Fibonacci(n+1).
a(3) = 10877 and a(4) = 17261 belong to A094395 Odd composite n such that n divides Fibonacci(n) + 1.

Examples

			a(1) = A128288(74) = 1853 = 17*109.
a(2) = 9701 = 89*109.
a(3) = 10877 = 73*149.
a(4) = 17261 = 41*421.
a(5) = 23323 = 83*281.
		

Crossrefs

Cf. A128288, A002708, A023172, A023173, A023162, A023163 = numbers n such that Fib(n) == -2 (mod n). Cf. A003631, A069107, A094413, A094395 = Odd composite n such that n divides Fibonacci(n) + 1.

Programs

  • Mathematica
    Do[ f = Mod[ Fibonacci[3n], 3n ]; If[ !PrimeQ[n] && f == 3n-2, Print[ {n, FactorInteger[n]} ]], {n,1,25000} ]

Extensions

Two more terms from R. J. Mathar, Oct 08 2007
a(9)-a(33) from Amiram Eldar, Apr 07 2019

A177086 Semiprimes k that divide Fibonacci(k-1).

Original entry on oeis.org

1891, 4181, 8149, 13201, 15251, 17711, 40501, 51841, 64079, 64681, 67861, 68251, 78409, 88601, 88831, 90061, 96049, 97921, 115231, 118441, 145351, 146611, 153781, 191351, 197209, 218791, 219781, 254321, 272611, 302101, 303101
Offset: 1

Views

Author

Jonathan Vos Post, Dec 09 2010

Keywords

Comments

This is the semiprime (A001358) analog of A045468. Now A045468 has a very simple characterization: it consists of the primes ending in 1 or 9. Can one say anything about the present sequence?

Examples

			46368/23 = 2016 = 2^5 * 3^2 * 7 so (24-1) | Fibonacci(24) but 24 is not semiprime, so is not in the sequence.
a(1) = 1891 = 31 * 61 is not in the sequence because 1891 divides Fibonacci(1891-1) = Fibonacci(1890).
a(21) = 146611 = 271 * 541 because 146611 | Fibonacci(146610).
		

Crossrefs

Cf. A000040, A000045, A001358, A069106, A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).
Cf. A177745 (semiprimes k that divide Fibonacci(k+1)).

Programs

  • Mathematica
    Select[Range[310000],PrimeOmega[#]==2 && Divisible[Fibonacci[#-1],#]&] (* Harvey P. Dale, May 02 2016 *)

Formula

{k: k is in A001358 and k|A000045(k-1)} = A069106 INTERSECTION A001358.

A214888 Primes congruent to {2, 3} mod 11.

Original entry on oeis.org

2, 3, 13, 47, 79, 101, 113, 157, 167, 179, 211, 223, 233, 277, 311, 409, 421, 431, 443, 487, 509, 541, 563, 607, 619, 641, 673, 739, 751, 761, 773, 827, 839, 883, 937, 971, 1069, 1091, 1103, 1201, 1213, 1223, 1279, 1289, 1301, 1367, 1399, 1433, 1487, 1499
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | p mod 11 in [2, 3]];
  • Mathematica
    Select[Prime[Range[500]],MemberQ[{2,3},Mod[#,11]]&]

A214889 Primes congruent to {2, 3} mod 13.

Original entry on oeis.org

2, 3, 29, 41, 67, 107, 197, 211, 223, 263, 353, 367, 379, 419, 431, 457, 509, 523, 587, 601, 613, 653, 691, 743, 757, 769, 809, 821, 887, 977, 991, 1069, 1237, 1277, 1289, 1303, 1367, 1381, 1433, 1459, 1471, 1511, 1523, 1549, 1601, 1627, 1667, 1693, 1783
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | p mod 13 in [2, 3]];
  • Mathematica
    Select[Prime[Range[2000]],MemberQ[{2,3},Mod[#,13]]&]

A214890 Primes congruent to {2, 3} mod 17.

Original entry on oeis.org

2, 3, 19, 37, 53, 71, 139, 173, 223, 241, 257, 359, 461, 479, 547, 563, 631, 683, 733, 751, 853, 887, 937, 971, 1039, 1091, 1193, 1277, 1447, 1481, 1499, 1549, 1567, 1583, 1601, 1669, 1753, 1787, 1873, 1889, 1907, 2111, 2161, 2179, 2213, 2281, 2297, 2383
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | p mod 17 in [2, 3]];
  • Mathematica
    Select[Prime[Range[3000]],MemberQ[{2,3},Mod[#,17]]&]
    Select[Flatten[(#+{2,3})&/@(17*Range[0,150])],PrimeQ] (* Harvey P. Dale, Aug 22 2020 *)

A035227 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 45.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 2, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[45, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
  • PARI
    my(m = 45); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(45, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(45, d).
Multiplicative with a(p^e) = 1 if Kronecker(45, p) = 0 (p = 3 or 5), a(p^e) = (1+(-1)^e)/2 if Kronecker(45, p) = -1 (p is in A003631 \ {3}), and a(p^e) = e+1 if Kronecker(45, p) = 1 (p is in A045468).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8*log(phi)/(3*sqrt(5)) = 0.573878587952..., where phi is the golden ratio (A001622) . (End)

A168483 Terms of A123239 which are primes in Z(sqrt(5)).

Original entry on oeis.org

2, 3, 13, 37, 67, 73, 83, 103, 107, 157, 193, 227, 277, 307, 313, 347, 367, 373, 397, 433, 443, 467, 523, 547, 563, 577, 587, 613, 673, 683, 733, 757, 787, 827, 853, 877, 883, 947, 967, 997, 1093, 1117, 1163, 1187, 1213, 1223, 1237, 1283, 1297
Offset: 1

Views

Author

A.K. Devaraj, Nov 26 2009

Keywords

Crossrefs

Programs

  • Mathematica
    MangammalQ[p_] := Block[{k = 3}, While[k > 2, k = Mod[3 k, p]]; k != 2];
    A168483 = Select[Prime[Range[215]], MangammalQ[#] && MemberQ[{2, 3}, Mod[#, 5]] &] (* Ray Chandler, Jul 21 2011 *)

Extensions

Corrected and extended by Ray Chandler, Jul 21 2011

A177745 Semiprimes k that divide Fibonacci(k+1).

Original entry on oeis.org

323, 377, 3827, 5777, 10877, 11663, 18407, 19043, 23407, 25877, 27323, 34943, 39203, 51983, 53663, 60377, 75077, 86063, 94667, 100127, 113573, 121103, 121393, 161027, 162133, 182513, 195227, 200147, 231703, 240239, 250277, 294527, 306287, 345913, 381923, 429263, 430127, 454607, 500207, 507527, 548627, 569087, 600767, 635627, 636707, 685583, 697883, 736163, 753377, 775207, 828827, 851927, 948433, 983903
Offset: 1

Views

Author

Jonathan Vos Post, Dec 12 2010

Keywords

Comments

Data from T. D. Noe.

Examples

			a(1) = 323 = 17 * 19 because it is semiprime (product of two prime A000040), and 323 divides F(324) = 23041483585524168262220906489642018075101617466780496790573690289968, with dividend 2^4 * 3^5 * 53 * 107 * 109 * 2269 * 3079 * 4373 * 5779 * 19441 * 11128427 * 62650261 * 1828620361 * 6782976947987.
		

Crossrefs

Cf. A177086, A000045, A001358, A069106, A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).

Programs

  • Mathematica
    With[{semis=Select[Range[1000000],PrimeOmega[#]==2&]},Select[semis, Divisible[Fibonacci[#+1],#]&]] (* Harvey P. Dale, Aug 20 2012 *)

Formula

{k: k is in A001358 and k|A000045(k+1)}.
Previous Showing 31-40 of 43 results. Next