A111933
Triangle read by rows, generated from Stirling cycle numbers.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 7, 6, 1, 4, 15, 35, 24, 1, 5, 26, 105, 228, 120, 1, 6, 40, 234, 947, 1834, 720, 1, 7, 57, 440, 2696, 10472, 17582, 5040, 1, 8, 77, 741, 6170, 37919, 137337, 195866, 40320, 1, 9, 100, 1155, 12244, 105315, 630521, 2085605, 2487832, 362880
Offset: 1
Row 5 of the triangle = 1, 4, 15, 35, 24; generated from M^n * [1,0,0,0,...] (n = 1 through 5); then take antidiagonals.
Terms in the array, first few rows are:
1, 1, 2, 6, 24, 120, ...
1, 2, 7, 35, 228, 1834, ...
1, 3, 15, 105, 947, 10472, ...
1, 4, 26, 234, 2697, 37919, ...
1, 5, 40, 440, 6170, 105315, ...
1, 6, 57, 741, 12244, 245755, ...
...
First few rows of the triangle are:
1;
1, 1;
1, 2, 2;
1, 3, 7, 6;
1, 4, 15, 35, 24;
1, 5, 26, 105, 228, 120;
1, 6, 40, 234, 947, 1834, 720;
...
A325872
T(n, k) = [x^k] Sum_{k=0..n} Stirling1(n, k)*FallingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 7, -6, 1, 0, -35, 40, -12, 1, 0, 228, -315, 130, -20, 1, 0, -1834, 2908, -1485, 320, -30, 1, 0, 17582, -30989, 18508, -5005, 665, -42, 1, 0, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 0, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, -2, 1]
[3] [0, 7, -6, 1]
[4] [0, -35, 40, -12, 1]
[5] [0, 228, -315, 130, -20, 1]
[6] [0, -1834, 2908, -1485, 320, -30, 1]
[7] [0, 17582, -30989, 18508, -5005, 665, -42, 1]
[8] [0, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1]
[9] [0, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1]
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Gabriella Bretti, Pierpaolo Natalini and Paolo E. Ricci, A new set of Sheffer-Bell polynomials and logarithmic numbers, Georgian Mathematical Journal, Feb. 2019, page 8.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
-
p[n_] := Sum[StirlingS1[n, k] FactorialPower[x, k] , {k, 0, n}];
Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten
-
T(n, k) = sum(j=k, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ Seiichi Manyama, Apr 18 2025
-
def a_row(n):
s = sum((-1)^(n-k)*stirling_number1(n,k)*falling_factorial(x,k) for k in (0..n))
return expand(s).list()
[a_row(n) for n in (0..9)]
A336438
a(n) = (n!)^n * [x^n] -log(1 - Sum_{k>=1} x^k / k^n).
Original entry on oeis.org
0, 1, 3, 107, 109720, 5916402624, 25690641168448256, 12501662072725447325457536, 901886074956174349048867091963183104, 12343856662712388173832816538241443833756015132672, 39989244654801819205752864236178211163455535276138236680981184512
Offset: 0
-
Table[(n!)^n SeriesCoefficient[-Log[1 - Sum[x^k/k^n, {k, 1, n}]], {x, 0, n}], {n, 0, 10}]
b[n_, k_] := If[n == 0, 0, ((n - 1)!)^k + (1/n) Sum[(Binomial[n, j] (n - j - 1)!)^k j b[j, k], {j, 1, n - 1}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 10}]
A346966
Expansion of e.g.f. -log( 1 - log(1 - x)^2 / 2 ).
Original entry on oeis.org
1, 3, 14, 80, 559, 4599, 43665, 470196, 5666586, 75600690, 1106587008, 17636532264, 304092954138, 5640892517610, 112029356591862, 2371963759970352, 53338181764577304, 1269586152655203672, 31891196481381667008, 843109673024218773600, 23400930987874505081160
Offset: 2
-
nmax = 22; CoefficientList[Series[-Log[1 - Log[1 - x]^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
a[n_] := a[n] = Abs[StirlingS1[n, 2]] + (1/n) Sum[Binomial[n, k] Abs[StirlingS1[n - k, 2]] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 2, 22}]
A373856
a(n) = Sum_{k=1..n} k! * k^(2*n-1) * |Stirling1(n,k)|.
Original entry on oeis.org
0, 1, 17, 1652, 474770, 301474214, 357901156354, 712632435944568, 2204970751341231816, 10017874331177386762512, 63973486554110386836270096, 554598491512901862814742673168, 6344773703149123365957506715989568, 93563015826037060521986513216617599504
Offset: 0
-
nmax=13; Range[0,nmax]!CoefficientList[Series[Sum[(-Log[1 - k^2*x])^k / k,{k,nmax}],{x,0,nmax}],x] (* Stefano Spezia, Jun 19 2024 *)
-
a(n) = sum(k=1, n, k!*k^(2*n-1)*abs(stirling(n, k, 1)));
A188881
Triangle of coefficients arising from an expansion of Integral( exp(exp(exp(x))), dx).
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 6, 11, 12, 6, 24, 50, 70, 60, 24, 120, 274, 450, 510, 360, 120, 720, 1764, 3248, 4410, 4200, 2520, 720, 5040, 13068, 26264, 40614, 47040, 38640, 20160, 5040, 40320, 109584, 236248, 403704, 538776, 544320, 393120, 181440, 40320
Offset: 1
Triangle begins:
1
1 1
2 3 2
6 11 12 6
24 50 70 60 24
120 274 450 510 360 120
...
-
S:=proc(n,k)global s:if(n=0 and k=0)then s[0,0]:=1:elif(n=0 or k=0)then s[n,k]:=0:elif(not type(s[n,k],integer))then s[n,k]:=(n-1)*S(n-1,k)+S(n-1,k-1):fi:return s[n,k]:end:
T:=proc(n,k)return (k-1)!*S(n,k);end:
for n from 1 to 6 do for k from 1 to n do print(T(n,k)):od:od: # Nathaniel Johnston, Apr 15 2011
# With offset n = 0, k = 0:
A188881 := (n, k) -> k!*abs(Stirling1(n+1, k+1)):
seq(seq(A188881(n,k), k=0..n), n=0..8); # Peter Luschny, Oct 19 2017
# Alternative:
gf := -log(1 + x*log(1 - t)): ser := series(gf, t, 18):
toeff := n -> n!*expand(coeff(ser, t, n)):
seq(print(seq(coeff(toeff(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Jul 10 2020
-
Table[(k - 1)! * Sum[StirlingS2[i, k] * (-1)^(n - i) * StirlingS1[n, i], {i, 0, k}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Apr 17 2015 *)
-
T(n,k):=(k-1)!*sum(stirling2(i,k)*(-1)^(n-i)*stirling1(n,i),i,0,k); /* Vladimir Kruchinin, Apr 17 2015 */
-
{T(n, k) = if( k<1 || k>n, 0, (n-1)! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^n, n-k))}; /* Michael Somos, May 10 2017 */
-
{T(n, k) = if( k<1 || n<0, 0, (k-1)! * sum(i=0, k, stirling(i, k, 2) * (-1)^(n-i) * stirling(n, i, 1)))}; /* Michael Somos, May 10 2017 */
A277408
Triangle, read by rows, where the g.f. of row n equals the sum of permutations of compositions of functions (1 + k*y*x) for k=1..n with parameter y independent of variable x, as evaluated at x=1.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 12, 22, 36, 24, 60, 140, 300, 576, 120, 360, 1020, 2700, 6576, 14400, 720, 2520, 8400, 26460, 77952, 211680, 518400, 5040, 20160, 77280, 282240, 974736, 3151680, 9408960, 25401600, 40320, 181440, 786240, 3265920, 12930624, 48444480, 170098560, 552303360, 1625702400, 362880, 1814400, 8769600, 40824000, 182226240, 775656000, 3126297600, 11820816000, 41391544320, 131681894400, 3628800, 19958400, 106444800, 548856000, 2726317440, 12989592000, 59044550400, 254303280000, 1028448368640, 3856920883200, 13168189440000, 39916800, 239500800, 1397088000, 7903526400, 43233886080, 227885011200, 1152535824000, 5563643500800, 25464033745920, 109530230261760, 437429486592000, 1593350922240000
Offset: 0
Illustration of initial row polynomials.
R_0(y) = 1;
R_1(y) = 1 + y;
R_2(y) = 2 + 3*y + 4*y^2;
R_3(y) = 6 + 12*y + 22*y^2 + 36*y^3;
R_4(y) = 24 + 60*y + 140*y^2 + 300*y^3 + 576*y^4;
R_5(y) = 120 + 360*y + 1020*y^2 + 2700*y^3 + 6576*y^4 + 14400*y^5;
R_6(y) = 720 + 2520*y + 8400*y^2 + 26460*y^3 + 77952*y^4 + 211680*y^5 + 518400*y^6;
R_7(y) = 5040 + 20160*y + 77280*y^2 + 282240*y^3 + 974736*y^4 + 3151680*y^5 + 9408960*y^6 + 25401600*y^7;
...
Generating method.
R_0(y) = 1, by convention;
R_1(y) = Sum_{i=1..1} (1 + i*y);
R_2(y) = Sum_{i=1..2, j=1..2, j<>i} (1 + i*y*(1 + j*y));
R_3(y) = Sum_{i=1..3, j=1..3, k=1..3, i,j,k distinct} (1 + i*y*(1 + j*y*(1 + k*y)));
R_4(y) = Sum_{i=1..4, j=1..4, k=1..4, m=1..4, i,j,k,m distinct} (1 + i*y*(1 + j*y*(1 + k*y*(1 + m*y))));
etc.
This triangle of coefficients begins:
1;
1, 1;
2, 3, 4;
6, 12, 22, 36;
24, 60, 140, 300, 576;
120, 360, 1020, 2700, 6576, 14400;
720, 2520, 8400, 26460, 77952, 211680, 518400;
5040, 20160, 77280, 282240, 974736, 3151680, 9408960, 25401600;
40320, 181440, 786240, 3265920, 12930624, 48444480, 170098560, 552303360, 1625702400; ...
-
{T(n,k) = k!*(n-k)! * sum(i=0,n-k+1, (-1)^(n-i+1) * stirling(i,n-k+1,2) * stirling(n+1,i,1))}
for(n=0,11,for(k=0,n,print1( T(n,k) ,", "));print(""))
-
{T(n, k) = if( k<0 || k>n, 0, n! * k! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^(n+1), k))}; /* Michael Somos, May 10 2017 */
A330498
Expansion of e.g.f. Sum_{k>=1} log(1 + log(1/(1 - x))^k) / k.
Original entry on oeis.org
0, 1, 1, 6, 24, 152, 1230, 12646, 141274, 1730984, 23920800, 379364664, 6766026168, 131337466608, 2713274041296, 59397879195456, 1386647548658496, 34745321580075648, 934708252265232768, 26835517455387452928, 815158892950448937984
Offset: 0
-
nmax = 20; CoefficientList[Series[Sum[Log[1+Log[1/(1-x)]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A341589
a(n) = Sum_{k=n..2*n} |Stirling1(2*n, k) * Stirling1(k, n)|.
Original entry on oeis.org
1, 2, 40, 1485, 81088, 5856900, 526685269, 56704848200, 7112345477952, 1018548226480356, 163987811350464660, 29321558852248050388, 5764958268855541178967, 1236150756215397667568170, 287086392921014590422630300, 71789589754855255636302048525, 19231403740347427723119910379040
Offset: 0
-
Table[Sum[Abs[StirlingS1[2 n, k] StirlingS1[k, n]], {k, n, 2 n}], {n, 0, 16}]
Table[((2 n)!/n!) SeriesCoefficient[(-Log[1 + Log[1 - x]])^n, {x, 0, 2 n}], {n, 0, 16}]
-
a(n) = sum(k=n, 2*n, abs(stirling(2*n, k, 1)*stirling(k, n, 1))); \\ Michel Marcus, Feb 16 2021
A383170
Expansion of e.g.f. -log(1 + log(1 - 2*x)/2).
Original entry on oeis.org
0, 1, 3, 16, 122, 1208, 14704, 212336, 3547984, 67337728, 1430990976, 33664165632, 868592478720, 24390846882816, 740570519159808, 24177326011834368, 844599686386919424, 31438092340685144064, 1242230898248798896128, 51933512200489564962816, 2290351520336982559358976
Offset: 0
-
a(n) = sum(k=1, n, 2^(n-k)*abs(stirling(n, k, 1)*stirling(k, 1, 1)));
Comments