A275131 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.
1, 2, 1, 5, 4, 2, 14, 16, 12, 4, 41, 64, 45, 36, 8, 122, 256, 174, 129, 108, 16, 365, 1024, 675, 568, 373, 324, 32, 1094, 4096, 2607, 2545, 2178, 1083, 972, 64, 3281, 16384, 10077, 11092, 12423, 8321, 3148, 2916, 128, 9842, 65536, 38967, 48451, 71576, 62378
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..1. .0..0..1..1. .0..1..2..2. .0..1..1..1. .0..0..1..2 ..2..2..0..2. .2..2..2..0. .2..0..1..0. .2..2..0..0. .1..2..0..1 ..1..1..1..1. .0..0..1..2. .1..2..2..2. .1..1..1..2. .0..1..2..2 ..0..0..0..0. .2..2..0..0. .0..1..1..1. .2..2..0..1. .2..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..312
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 3*a(n-1) for n>2
k=3: [order 9] for n>10
k=4: [order 17] for n>20
k=5: [order 28] for n>31
k=6: [order 67] for n>70
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 3*a(n-1) +2*a(n-2) +6*a(n-3) -2*a(n-4) -4*a(n-5) for n>6
n=4: [order 9] for n>11
n=5: [order 10] for n>14
n=6: [order 26] for n>28
n=7: [order 53] for n>58
Comments