cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 126 results. Next

A275131 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 1, 5, 4, 2, 14, 16, 12, 4, 41, 64, 45, 36, 8, 122, 256, 174, 129, 108, 16, 365, 1024, 675, 568, 373, 324, 32, 1094, 4096, 2607, 2545, 2178, 1083, 972, 64, 3281, 16384, 10077, 11092, 12423, 8321, 3148, 2916, 128, 9842, 65536, 38967, 48451, 71576, 62378
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Table starts
...1.....2.....5......14.......41.......122.........365.........1094
...1.....4....16......64......256......1024........4096........16384
...2....12....45.....174......675......2607.......10077........38967
...4....36...129.....568.....2545.....11092.......48451.......212897
...8...108...373....2178....12423.....71576......412306......2381629
..16...324..1083....8321....62378....473185.....3586068.....27224209
..32...972..3148...31772...315021...3146574....31446544....315531602
..64..2916..9157..121707..1591442..20970214...276145917...3669759648
.128..8748.26623..466252..8024937.139845553..2432426709..42807577389
.256.26244.77372.1783920.40445177.930732169.21443562178.499213473864

Examples

			Some solutions for n=4 k=4
..0..0..1..1. .0..0..1..1. .0..1..2..2. .0..1..1..1. .0..0..1..2
..2..2..0..2. .2..2..2..0. .2..0..1..0. .2..2..0..0. .1..2..0..1
..1..1..1..1. .0..0..1..2. .1..2..2..2. .1..1..1..2. .0..1..2..2
..0..0..0..0. .2..2..0..0. .0..1..1..1. .2..2..0..1. .2..0..0..1
		

Crossrefs

Column 1 is A000079(n-2).
Column 2 is A003946(n-1).
Row 1 is A007051(n-1).
Row 2 is A000302(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 3*a(n-1) for n>2
k=3: [order 9] for n>10
k=4: [order 17] for n>20
k=5: [order 28] for n>31
k=6: [order 67] for n>70
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 3*a(n-1) +2*a(n-2) +6*a(n-3) -2*a(n-4) -4*a(n-5) for n>6
n=4: [order 9] for n>11
n=5: [order 10] for n>14
n=6: [order 26] for n>28
n=7: [order 53] for n>58

A274895 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 4, 12, 7, 6, 8, 36, 16, 14, 12, 16, 108, 37, 38, 26, 24, 32, 324, 86, 104, 84, 50, 48, 64, 972, 200, 290, 275, 192, 95, 96, 128, 2916, 465, 815, 913, 753, 436, 181, 192, 256, 8748, 1081, 2291, 3064, 3017, 2049, 990, 345, 384, 512, 26244, 2513, 6434, 10337
Offset: 1

Views

Author

R. H. Hardin, Jul 10 2016

Keywords

Comments

Table starts
...1...1....2.....4......8......16.......32........64........128.........256
...2...4...12....36....108.....324......972......2916.......8748.......26244
...3...7...16....37.....86.....200......465......1081.......2513........5842
...6..14...38...104....290.....815.....2291......6434......18065.......50729
..12..26...84...275....913....3064....10337.....34921.....117975......398560
..24..50..192...753...3017...12217....49697....202749.....828828.....3391310
..48..95..436..2049...9863...48269...237807...1173787....5803040....28746995
..96.181..990..5602..32539..191974..1143185...6843349...41072451...246859250
.192.345.2253.15305.107369..767905..5539989..40156061..292253909..2133745005
.384.657.5121.41866.354366.3065418.26833885.236220817.2086382703.18485204565

Examples

			Some solutions for n=4 k=4
..0..1..0..2. .0..1..2..0. .0..1..0..2. .0..1..2..0. .0..1..2..1
..2..1..2..1. .1..2..0..1. .2..1..0..2. .1..2..0..1. .1..2..0..1
..1..0..2..1. .2..0..1..2. .1..0..2..1. .1..2..1..2. .1..0..1..2
..1..0..1..0. .2..0..1..0. .1..0..2..0. .2..0..1..2. .2..0..1..0
		

Crossrefs

Column 1 is A003945(n-2).
Column 2 is A052535(n+1).
Row 1 is A000079(n-2).
Row 2 is A003946(n-1).
Row 3 is A010912(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: a(n) = a(n-1) +2*a(n-2) -a(n-4) for n>5
k=3: a(n) = a(n-1) +4*a(n-2) -6*a(n-4) -a(n-5) +4*a(n-6) -a(n-8) for n>10
k=4: [order 16] for n>18
k=5: [order 32] for n>34
k=6: [order 64] for n>66
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>2
n=3: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3)
n=4: a(n) = 5*a(n-1) -9*a(n-2) +10*a(n-3) -6*a(n-4) +a(n-5) for n>6
n=5: [order 8] for n>9
n=6: [order 13] for n>14
n=7: [order 21] for n>22

A183362 T(n,k)=One quarter the number of nXk 1..4 arrays with no two neighbors of any element equal to each other.

Original entry on oeis.org

1, 4, 4, 12, 36, 12, 36, 144, 144, 36, 108, 576, 432, 576, 108, 324, 2304, 1296, 1296, 2304, 324, 972, 9216, 3888, 3600, 3888, 9216, 972, 2916, 36864, 11664, 9216, 9216, 11664, 36864, 2916, 8748, 147456, 34992, 24336, 24192, 24336, 34992, 147456, 8748
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Table starts
.....1.......4.....12......36.....108.....324.....972.....2916.....8748
.....4......36....144.....576....2304....9216...36864...147456...589824
....12.....144....432....1296....3888...11664...34992...104976...314928
....36.....576...1296....3600....9216...24336...63504...166464...435600
...108....2304...3888....9216...24192...57600..137088...331776...802944
...324....9216..11664...24336...57600..147456..331776...746496..1679616
...972...36864..34992...63504..137088..331776..829440..1806336..3852288
..2916..147456.104976..166464..331776..746496.1806336..4460544..9437184
..8748..589824.314928..435600..802944.1679616.3852288..9437184.23003136
.26244.2359296.944784.1140624.1937664.3873024.8294400.19501056.47775744

Examples

			Some solutions for 6X5 with a(1,1)=1
..1..1..3..2..2....1..1..3..2..1....1..1..4..2..3....1..1..3..2..4
..4..4..3..1..1....2..2..4..4..3....3..3..4..1..3....4..4..3..1..1
..3..2..2..4..4....4..3..1..1..3....4..2..2..1..4....3..2..2..4..3
..3..1..1..3..2....4..3..2..2..4....4..1..3..3..4....3..1..1..4..3
..2..4..4..3..1....1..1..4..3..1....3..1..4..2..2....2..4..3..2..2
..1..3..2..2..1....2..2..4..3..1....3..2..4..1..3....1..4..3..1..4
		

Crossrefs

Column 1 is A003946(n-1)

A209019 T(n,k)=Number of nXk 0..3 arrays with no element equal the average of immediate neighbors vertically above, diagonally above and left, and horizontally left of it.

Original entry on oeis.org

4, 12, 12, 36, 130, 36, 108, 1430, 1430, 108, 324, 15724, 57412, 15724, 324, 972, 172936, 2303052, 2303052, 172936, 972, 2916, 1901964, 92409982, 337083370, 92409982, 1901964, 2916, 8748, 20918008, 3707858104, 49349902246, 49349902246
Offset: 1

Views

Author

R. H. Hardin Mar 04 2012

Keywords

Comments

Table starts
....4........12............36................108....................324
...12.......130..........1430..............15724.................172936
...36......1430.........57412............2303052...............92409982
..108.....15724.......2303052..........337083370............49349902246
..324....172936......92409982........49349902246.........26361689168962
..972...1901964....3707858104......7224768704460......14081479775124768
.2916..20918008..148774643618...1057701934285612....7521858792951566188
.8748.230058424.5969451726624.154846841369187254.4017924265572698697072

Examples

			Some solutions for n=4 k=3
..3..1..2....1..3..0....0..2..0....1..2..0....0..1..3....3..2..3....0..1..0
..1..3..3....2..1..3....3..0..0....3..3..3....2..3..1....0..2..3....3..2..2
..3..1..3....0..2..0....2..1..1....0..0..0....1..3..0....3..0..1....1..3..1
..1..3..3....1..2..0....0..2..1....2..1..3....2..0..0....2..3..2....2..3..2
		

Crossrefs

Column 1 is A003946

A209047 T(n,k)=Number of nXk 0..3 arrays with no element equal the average of immediate neighbors vertically above and horizontally left of it.

Original entry on oeis.org

4, 12, 12, 36, 124, 36, 108, 1300, 1300, 108, 324, 13644, 47700, 13644, 324, 972, 143212, 1752148, 1752148, 143212, 972, 2916, 1503212, 64369764, 225262148, 64369764, 1503212, 2916, 8748, 15778340, 2364812680, 28964458546, 28964458546
Offset: 1

Views

Author

R. H. Hardin Mar 04 2012

Keywords

Comments

Table starts
....4........12............36...............108....................324
...12.......124..........1300.............13644.................143212
...36......1300.........47700...........1752148...............64369764
..108.....13644.......1752148.........225262148............28964458546
..324....143212......64369764.......28964458546.........13034933066892
..972...1503212....2364812680.....3724317998214.......5866193355938718
.2916..15778340...86878417604...478881915072688....2640002203816927226
.8748.165616044.3191736905988.61575811582924326.1188097914449381928076

Examples

			Some solutions for n=4 k=3
..0..3..0....3..1..2....0..2..0....0..1..2....1..3..2....2..0..1....0..1..3
..1..1..3....1..3..3....3..0..1....3..3..0....2..0..2....0..2..0....1..2..1
..2..1..1....3..1..3....2..2..1....0..1..1....3..1..1....1..2..2....2..0..2
..3..1..2....1..3..0....0..2..1....3..3..1....0..1..2....3..0..0....3..1..0
		

Crossrefs

Column 1 is A003946

A287839 Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 9.

Original entry on oeis.org

1, 11, 117, 1247, 13289, 141619, 1509213, 16083463, 171399121, 1826575451, 19465548357, 207441511727, 2210673955769, 23558830139779, 251063019088173, 2675542001860183, 28512861152219041, 303857405535211691, 3238164083417650197, 34508642672922983807
Offset: 0

Views

Author

David Nacin, Jun 07 2017

Keywords

Comments

In general, the number of sequences on {0,1,...,10} such that no two consecutive terms have distance 6+k for k in {0,1,2,3,4} has generating function (-1 - x)/(-1 + 10*x + (2*k+1)*x^2).

Crossrefs

Programs

  • Maple
    a:=proc(n) option remember; if n=0 then 1 elif n=1 then 11 elif n=2 then 117 else 10*a(n-1)+7*a(n-2); fi; end: seq(a(n), n=0..30); # Wesley Ivan Hurt, Nov 25 2017
  • Mathematica
    LinearRecurrence[{10, 7}, {1, 11, 117}, 20]
  • PARI
    Vec((1 + x) / (1 - 10*x - 7*x^2) + O(x^30)) \\ Colin Barker, Nov 25 2017
  • Python
    def a(n):
     if n in [0,1,2]:
      return [1, 11, 117][n]
     return 10*a(n-1) + 7*a(n-2)
    

Formula

For n>2, a(n) = 10*a(n-1) + 7*a(n-2), a(0)=1, a(1)=11, a(2)=117.
G.f.: (-1 - x)/(-1 + 10 x + 7 x^2).
a(n) = (((5-4*sqrt(2))^n*(-3+2*sqrt(2)) + (3+2*sqrt(2))*(5+4*sqrt(2))^n)) / (4*sqrt(2)). - Colin Barker, Nov 25 2017

A052156 Number of compositions of n into 2*j-1 kinds of j's for all j>=1.

Original entry on oeis.org

1, 1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 0

Views

Author

Barry E. Williams, Jan 24 2000

Keywords

Comments

First differences of A025192, also second differences of A000244.

Examples

			1 + x + 4*x^2 + 12*x^3 + 36*x^4 + 108*x^5 + 324*x^6 + 972*x^7 + 2916*x^8 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
  • P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)^2/(1 - 3 x), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
  • PARI
    {a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (-4*k + 9) * A[k-1] + 3 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */

Formula

a(n) = 4*3^(n-2); n >= 2; a(0) = 1; a(1) = 1.
G.f.: (1-x)^2/(1-3*x).
G.f.: 1/(1-sum(j>=1, (2*j-1)*x^j )). - Joerg Arndt, Jul 06 2011
a(n) = 3*a(n-1)+(-1)^n*C(2, 2-n).
a(n) = A003946(n-1), n>0. - R. J. Mathar, Oct 13 2008
a(n) = (-4*n + 9) * a(n-1) + 3 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
a(n) = Sum_{k, 0<=k<=n} A201780(n,k). - Philippe Deléham, Dec 05 2011

Extensions

New name from Joerg Arndt, Jul 06 2011

A167882 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395622, 172186848, 516560496, 1549681344, 4649043600, 13947129504, 41841384624, 125524142208, 376572391632, 1129717069920
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-3*x+5*x^16-3*x^17) )); // G. C. Greubel, Dec 06 2024
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-3*t+5*t^16-3*t^17), {t,0,50}], t] (* G. C. Greubel, Jun 29 2016; Dec 06 2024 *)
    coxG[{16,3,-2}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
  • SageMath
    def A167882_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-3*x+5*x^16-3*x^17) ).list()
    print(A167882_list(40)) # G. C. Greubel, Dec 06 2024

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / ( 3*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
From G. C. Greubel, Jan 17 2023: (Start)
a(n) = 2*Sum_{j=1..15} a(n-j) - 3*a(n-16).
G.f.: (1+x)*(1-x^16)/(1 - 3*x + 5*x^16 - 3*x^17). (End)

A203378 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

12, 36, 36, 108, 164, 108, 324, 748, 748, 324, 972, 3412, 5208, 3412, 972, 2916, 15564, 36300, 36300, 15564, 2916, 8748, 70996, 253068, 387324, 253068, 70996, 8748, 26244, 323852, 1764360, 4136292, 4136292, 1764360, 323852, 26244, 78732, 1477268
Offset: 1

Views

Author

R. H. Hardin Dec 31 2011

Keywords

Comments

Table starts
....12......36......108........324..........972...........2916.............8748
....36.....164......748.......3412........15564..........70996...........323852
...108.....748.....5208......36300.......253068........1764360.........12301020
...324....3412....36300.....387324......4136292.......44183028........471988172
...972...15564...253068....4136292.....67731264.....1109832180......18189909480
..2916...70996..1764360...44183028...1109832180....27913330472.....702420750924
..8748..323852.12301020..471988172..18189909480...702420750924...27149753088792
.26244.1477268.85762188.5042151644.298154846436.17679917387404.1049837466171436

Examples

			Some solutions for n=4 k=3
..0..0..1..0....1..0..1..1....1..1..0..0....1..1..1..1....1..0..0..0
..0..1..1..1....0..1..1..0....1..1..1..0....1..1..0..1....0..1..0..0
..1..0..1..1....0..0..1..1....1..0..1..1....0..1..1..1....1..0..1..0
..1..1..0..1....1..0..0..1....0..1..1..1....1..1..0..1....1..1..1..1
..1..1..1..1....0..1..0..0....0..0..1..1....1..0..0..0....1..1..0..1
		

Crossrefs

Column 1 is A003946(n+1)
Column 2 is A147722(n+2)

A265583 Array T(n,k) = k*(k-1)^(n-1) read by ascending antidiagonals; k,n >= 1.

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 12, 12, 5, 0, 2, 24, 36, 20, 6, 0, 2, 48, 108, 80, 30, 7, 0, 2, 96, 324, 320, 150, 42, 8, 0, 2, 192, 972, 1280, 750, 252, 56, 9, 0, 2, 384, 2916, 5120, 3750, 1512, 392, 72, 10, 0, 2, 768, 8748, 20480, 18750, 9072, 2744, 576, 90, 11
Offset: 1

Views

Author

R. J. Mathar, Dec 10 2015

Keywords

Comments

T(n,k) is the number of n-letter words in a k-letter alphabet with no adjacent letters the same. The factor k represents the number of choices of the first letter, and the n-1 times repeated factor k-1 represents the choices of the next n-1 letters avoiding their predecessor.
The antidiagonal sums are s(d) = 1, 2, 5, 12, 31, 88, 275, 942, 3513, 14158, 61241, 282632, .. for d = n+k >= 2.

Examples

			      1       2       3       4       5       6       7
      0       2       6      12      20      30      42
      0       2      12      36      80     150     252
      0       2      24     108     320     750    1512
      0       2      48     324    1280    3750    9072
      0       2      96     972    5120   18750   54432
      0       2     192    2916   20480   93750  326592
T(3,3)=12 counts aba, abc, aca, acb, bab, bac, bca, bcb, cab, cac, cba, cbc. Words like aab or cbb are not counted.
		

Crossrefs

Cf. A007283 (column 3), A003946 (column 4), A003947 (column 5), A002378 (row 2), A011379 (row 3), A179824 (row 4), A055897 (diagonal), A265584.

Programs

  • GAP
    T:= function(n,k)
        if (n=1 and k=1) then return 1;
        else return k*(k-1)^(n-k-1);
        fi;
      end;
    Flat(List([2..15], n-> List([1..n-1], k-> T(n,k) ))); # G. C. Greubel, Aug 10 2019
  • Magma
    T:= func< n,k | (n eq 1 and k eq 1) select 1 else k*(k-1)^(n-k-1) >;
    [T(n,k): k in [1..n-1], n in [2..15]]; // G. C. Greubel, Aug 10 2019
    
  • Maple
    A265583 := proc(n,k)
        k*(k-1)^(n-1) ;
    end proc:
    seq(seq( A265583(d-k,k),k=1..d-1),d=2..13) ;
  • Mathematica
    T[1,1] = 1; T[n_, k_] := If[k==1, 0, k*(k-1)^(n-1)]; Table[T[n-k,k], {n,2,12}, {k,1,n-1}] // Flatten (* Amiram Eldar, Dec 13 2018 *)
  • PARI
    T(n,k) = if(n==k==1, 1, k*(k-1)^(n-k-1) );
    for(n=2,15, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 10 2019
    
  • Sage
    def T(n, k):
        if (n==k==1): return 1
        else: return k*(k-1)^(n-k-1)
    [[T(n, k) for k in (1..n-1)] for n in (2..15)] # G. C. Greubel, Aug 10 2019
    

Formula

T(n,k) = k*A051129(n-1,k-1) = k*A003992(k-1,n-1).
G.f. for column k: k*x/(1-(k-1)*x). - R. J. Mathar, Dec 12 2015
G.f. for array: y/(y-1) - (1+1/x)*y*LerchPhi(y,1,-1/x). - Robert Israel, Dec 13 2018
Previous Showing 21-30 of 126 results. Next