cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A335586 Number of domino tilings of a 2n X 2n toroidal grid.

Original entry on oeis.org

1, 8, 272, 90176, 311853312, 11203604497408, 4161957566985310208, 15954943354032349049274368, 630665326543010382995142219988992, 256955886436135671144699761794930161483776
Offset: 0

Views

Author

Drake Thomas, Jan 26 2021

Keywords

Comments

For n > 1, number of perfect matchings of the graph C_2n X C_2n.

Examples

			For n = 1, there are a(1) = 8 tilings (see the Links section for a diagram).
		

Crossrefs

Number of perfect matchings of the graph C_2m X C_n: A162484 (m=1), A220864 (m=2), A232804 (m=3), A253678 (m=4), A281679 (m=5), A309018 (m=6).

Programs

  • PARI
    default(realprecision, 120);
    b(n) = round(prod(j=1, n-1, prod(k=1, n, 4*sin(j*Pi/n)^2+4*sin((2*k-1)*Pi/(2*n))^2)));
    c(n) = round(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/(2*n))^2)));
    a(n) = if(n==0, 1, 4*b(n)+c(n)/2); \\ Seiichi Manyama, Feb 13 2021

Formula

a(n) = 4 * Product_{j=1..n-1} Product_{k=1..n} (4*sin(j*Pi/n)^2 + 4*sin((2*k-1)*Pi/(2*n))^2) + 1/2 * Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/(2*n))^2) = 4 * A341478(n)^2 + A341479(n)/2 for n > 0. - Seiichi Manyama, Feb 13 2021
a(n) ~ (1 + sqrt(2)) * exp(4*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021

Extensions

More terms from Seiichi Manyama, Feb 13 2021

A340185 Number of spanning trees in the halved Aztec diamond HOD_n.

Original entry on oeis.org

1, 1, 15, 2639, 5100561, 105518291153, 23067254643457375, 52901008815129395889375, 1266973371422697144030728637409, 315937379766837559600972497421046382689, 818563964325891485548944567913851815851212484079
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

*
|
* *---*---*
| | | |
* *---*---* *---*---*---*---*
| | | | | | | | |
*---*---* *---*---*---*---* *---*---*---*---*---*---*
HOD_1 HOD_2 HOD_3
-------------------------------------------------------------
*
|
*---*---*
| | |
*---*---*---*---*
| | | | |
*---*---*---*---*---*---*
| | | | | | |
*---*---*---*---*---*---*---*---*
HOD_4

Crossrefs

Cf. A004003, A007725, A007726, A065072, A127605, A340052, A340176 (halved Aztec diamond HMD_n).

Programs

  • Mathematica
    Table[4^((n-1)*n) * Product[Product[(1 - Cos[j*Pi/(2*n + 1)]^2*Cos[k*Pi/(2*n + 1)]^2), {k, j+1, n}], {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Jan 03 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(prod(j=1, 2*n, prod(k=j+1, 2*n-j, 4-4*cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))))}
    
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^((n-1)*n)*prod(j=1, n, prod(k=j+1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))} \\ Seiichi Manyama, Jan 02 2021
    
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_HOD(n):
        s = 1
        grids = []
        for i in range(2 * n + 1, 1, -2):
            for j in range(i - 2):
                a, b, c = s + j, s + j + 1, s + i + j
                grids.extend([(a, b), (b, c)])
            grids.append((s + i - 2, s + i - 1))
            s += i
        return grids
    def A340185(n):
        if n == 0: return 1
        universe = make_HOD(n)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A340185(n) for n in range(7)])

Formula

a(n) = Product_{1<=j
From Seiichi Manyama, Jan 02 2021: (Start)
a(n) = 4^((n-1)*n) * Product_{1<=j
a(n) = A340052(n) * A065072(n) = (1/2^n) * sqrt(A127605(n) * A004003(n) / (2*n+1)). (End)
a(n) ~ sqrt(Gamma(1/4)) * exp(G*(2*n+1)^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n + 3/4) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 03 2021

A348452 Irregular triangle read by rows: T(n,k) (n >= 1, 1 <= k <= n^2) is the number of ways to tile an n X n chessboard with k rook-connected polyominoes of equal area.

Original entry on oeis.org

1, 1, 2, 0, 1, 1, 0, 10, 0, 0, 0, 0, 0, 1, 1, 70, 0, 117, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4006, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 80518, 264500, 442791, 0, 451206, 0, 0, 178939, 0, 0, 80092, 0, 0, 0, 0, 0, 6728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 158753814, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Author

N. J. A. Sloane, Oct 27 2021

Keywords

Comments

The board has n^2 squares. The colors do not matter. T(n,k) is zero unless k divides n^2. The tiles are rook-connected polygons made from n^2/k squares.
This is the "labeled" version of the problem. Symmetries of the square are not taken into account. Rotations and reflections count as different.
A348453 (the main entry for this problem) displays the same data in a more compact way (by omitting the zero entries from each row).
The data is taken from A004003, A172477, and Schutzman & MGGG (2018).

Examples

			The first seven rows of the triangle are:
1,
1, 2, 0, 1,
1, 0, 10, 0, 0, 0, 0, 0, 1,
1, 70, 0, 117, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 4006, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 80518, 264500, 442791, 0, 451206, 0, 0, 178939, 0, 0, 80092, 0, 0, 0, 0, 0, 6728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 158753814, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
...
The domino is the only polyomino of area 2, and the 36 ways to tile a 4 X 4 square with dominoes are shown in one of the links.
		

Crossrefs

Cf. A348453. A348454 and A348455 are similar triangles with the data in each row reversed. The row sums are in A348789.

Formula

A formula for T(n, n^2/2) was found by Kastelyn (see A004003 and A099390). T(n,n) is studied in A172477.

Extensions

More than the usual number of terms are given, in order to show the first seven rows.

A334088 a(n) = sqrt(Resultant(T(2*n,x/2), T(2*n,i*x/2))), where T(n,x) is a Chebyshev polynomial of the first kind and i = sqrt(-1).

Original entry on oeis.org

1, 1, 8, 676, 591872, 5347119376, 497996601804800, 477995151754478453824, 4727827717838439286122217472, 481856411624794348153802518369517824, 506033683217425527860454091268429289861152768
Offset: 0

Author

Seiichi Manyama, Apr 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sqrt[Resultant[ChebyshevT[2*n, x/2], ChebyshevT[2*n, I*x/2], x]], {n, 0, 12}] (* Vaclav Kotesovec, Apr 14 2020 *)
  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))}
    
  • Python
    from math import isqrt
    from sympy.abc import x
    from sympy import resultant, chebyshevt, I
    def A334088(n): return isqrt(resultant(chebyshevt(n<<1,x/2),chebyshevt(n<<1,I*x/2))) if n else 1 # Chai Wah Wu, Nov 07 2023

Formula

a(n) ~ exp(4*G*n^2/Pi) / 2^(2*n - 1/4), where G is Catalan's constant A006752. - Vaclav Kotesovec, Apr 14 2020

A340182 a(n) = Product_{1<=j,k,m<=n} (4*cos(j*Pi/(2*n+1))^2 + 4*cos(k*Pi/(2*n+1))^2 + 4*cos(m*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 3, 61731, 220157391087140625, 3109768877542258728107559478225309328087616
Offset: 0

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

(a(n)/3^n)^(1/3) is an integer.

Crossrefs

Programs

  • Mathematica
    Round[Table[4^(n^3) * Product[Cos[j*Pi/(2*n + 1)]^2 + Cos[k*Pi/(2*n + 1)]^2 + Cos[m*Pi/(2*n + 1)]^2, {j, 1, n}, {k, 1, n}, {m, 1, n}], {n, 0, 5}]] (* or *)
    Round[Table[2^(n^3) * Product[3 + Cos[2*j*Pi/(2*n + 1)] + Cos[2*k*Pi/(2*n + 1)] + Cos[2*m*Pi/(2*n + 1)], {j, 1, n}, {k, 1, n}, {m, 1, n}], {n, 0, 5}]] (* or *)
    Round[Table[Product[u = Sqrt[Cos[j*Pi/(2*n + 1)]^2 + Cos[k*Pi/(2*n + 1)]^2]; (((u + Sqrt[1 + u^2])^(2*n + 1) - (u - Sqrt[1 + u^2])^(2*n + 1))/(2*Sqrt[1 + u^2])), {j, 1, n}, {k, 1, n}], {n, 0, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 500);
    {a(n) = round(prod(j=1, n, prod(k=1, n, prod(m=1, n, 4*cos(j*Pi/(2*n+1))^2+4*cos(k*Pi/(2*n+1))^2+4*cos(m*Pi/(2*n+1))^2))))}

Formula

From Vaclav Kotesovec, Jan 04 2021: (Start)
a(n) ~ c * d^n * s^(n^2) * r^(n^3), where
r = exp(8*A340322/Pi^3) = exp((8/Pi^3) * Integral_{x=0..Pi/2, y=0..Pi/2, z=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2 + 4*cos(z)^2) dx dy dz) = 5.3302028892051674211345979966496595201084467305922855029660919024805225841...
s = 0.57208914727550556482486188829703578692890272003698306852389010626941042...
d = 0.91012013388841787275362130594290903074302493828277326742531159...
c = 1.057086458532774496412062406469810663638243576302292119... (End)

A348453 Irregular triangle read by rows: T(n,k) (n >= 1, 1 <= k <= number of divisors of n^2) is the number of ways to tile an n X n chessboard with d_k rook-connected polyominoes of equal area, where d_k is the k-th divisor of n^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 10, 1, 1, 70, 117, 36, 1, 1, 4006, 1, 1, 80518, 264500, 442791, 451206, 178939, 80092, 6728, 1, 1, 158753814, 1, 7157114189
Offset: 1

Author

N. J. A. Sloane, Oct 27 2021

Keywords

Comments

The board has n^2 squares. The colors do not matter. The tiles are rook-connected polygons made from n^2/d_k squares.
This is the "labeled" version of the problem. Symmetries of the square are not taken into account. Rotations and reflections count as different.
A348452 displays the same data in a less compact way. The present triangle is obtained by omitting the zero entries from A348452.
The data is taken from A004003, A172477, A348456, and Schutzman & MGGG (2018).
T(8,2) = 7157114189 (see A348456). T(8,3) is presently unknown.

Examples

			The first eight rows of the triangle are:
  1,
  1, 2, 1,
  1, 10, 1,
  1, 70, 117, 36, 1,
  1, 4006, 1,
  1, 80518, 264500, 442791, 451206, 178939, 80092, 6728, 1,
  1, 158753814, 1,
  1, 7157114189, ?, 187497290034, ?, ?, 1,
  ...
The corresponding divisors d_k are:
  1,
  1, 2, 4,
  1, 3, 9,
  1, 2, 4, 8, 16,
  1, 5, 25,
  ...
The domino is the only polyomino of area 2, and the 36 ways to tile a 4 X 4 square with dominoes are shown in one of the links.
		

Crossrefs

Cf. A348452. A348454 and A348455 are similar triangles with the data in each row reversed.
Cf. A048691 (row lengths).

Formula

A formula for T(n, n^2/2) was found by Kastelyn (see A004003 and A099390). T(n,n) is studied in A172477.

Extensions

T(8,2) added May 04 2022 (see A348456) - N. J. A. Sloane, May 05 2022

A360256 Number of ways to tile an n X n square using rectangles with distinct height X width dimensions.

Original entry on oeis.org

1, 1, 33, 513, 14409, 693025, 50447161
Offset: 1

Author

Scott R. Shannon, Feb 17 2023

Keywords

Comments

All possible tilings are counted, including those identical by symmetry. Note that distinct height X width dimensions means that, for example, a 1 X 3 rectangle can be used twice, once in a horizontal (1 X 3) and once in a vertical (3 X 1) direction.

Examples

			a(1) = 1 as the only way to tile a 1 X 1 square is with a square with dimensions 1 X 1.
a(2) = 1 as the only way to tile a 2 X 2 square is with a square with dimensions 2 X 2.
a(3) = 33. The possible tilings, excluding those equivalent by symmetry, are:
.
  +---+---+---+   +---+---+---+   +---+---+---+   +---+---+---+   +---+---+---+
  |   |       |   |   |       |   |       |   |   |           |   |   |       |
  +---+---+---+   +---+---+---+   +---+---+   +   +---+---+---+   +---+---+---+
  |   |       |   |           |   |       |   |   |           |   |       |   |
  +   +       +   +           +   +       +   +   +           +   +       +   +
  |   |       |   |           |   |       |   |   |           |   |       |   |
  +---+---+---+   +---+---+---+   +---+---+---+   +---+---+---+   +---+---+---+
.
The first tiling can occur in 4 different ways, the second in 8 different ways, the third in 8 different ways, the fourth in 4 different ways and the fifth in 8 different ways. There is also the single 3 X 3 rectangle. This gives 33 ways in total.
		

Crossrefs

A360498 Number of ways to tile an n X n square using oblongs with distinct dimensions.

Original entry on oeis.org

0, 0, 4, 12, 256, 3620, 87216, 2444084, 87181220
Offset: 1

Author

Scott R. Shannon, Feb 09 2023

Keywords

Comments

All possible tilings are counted, including those identical by symmetry. Note that distinct dimensions means that, for example, a 1 x 3 oblong can only be used once, regardless of if it lies horizontally or vertically.

Examples

			a(1) = 0 as no distinct oblongs can tile a square with dimensions 1 x 1.
a(2) = 0 as no distinct oblongs can tile a square with dimensions 2 x 2.
a(3) = 4. There is one tiling, excluding those equivalent by symmetry:
.
  +---+---+---+
  |           |
  +---+---+---+
  |           |
  +           +
  |           |
  +---+---+---+
.
This tiling can occur in 4 different ways, giving 4 ways in total.
a(4) = 12. The possible tilings, excluding those equivalent by symmetry, are:
.
  +---+---+---+---+   +---+---+---+---+
  |   |           |   |               |
  +   +           +   +---+---+---+---+
  |   |           |   |               |
  +---+---+---+---+   +               +
  |               |   |               |
  +               +   +               +
  |               |   |               |
  +---+---+---+---+   +---+---+---+---+
.
The first tiling can occur in 8 different way and the second in 4 different ways, giving 12 ways in total.
		

Crossrefs

Cf. A360499 (rectangles), A004003, A099390, A065072, A233320, A230031.

A239273 Number of domicule tilings of a 2n X 2n square grid.

Original entry on oeis.org

1, 3, 280, 3037561, 3263262629905, 326207195516663381931, 3011882198082438957330143630563, 2565014347691062208319404612723752103028288, 201442620359313683494245316355883565275531844406384955392, 1458834332808489549111708247664894524221330758005874053074138540424018259
Offset: 0

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.
Number of perfect matchings in the 2n X 2n kings graph. - Andrew Howroyd, Apr 07 2016

Examples

			a(1) = 3:
  +---+   +---+   +---+
  |o o|   |o o|   |o-o|
  || ||   | X |   |   |
  |o o|   |o o|   |o-o|
  +---+   +---+   +---+.
a(2) = 280:
  +-------+ +-------+ +-------+ +-------+ +-------+
  |o o o-o| |o o o-o| |o-o o-o| |o o o o| |o o-o o|
  | X     | | X     | |       | | X  | || | \   / |
  |o o o o| |o o o o| |o o o o| |o o o o| |o o o o|
  |   /  || |   / / | ||  X  || |       | ||     ||
  |o o o o| |o o o o| |o o o o| |o-o o o| |o o o o|
  ||    \ | ||     || |       | |     X | | / /   |
  |o o-o o| |o o-o o| |o-o o-o| |o-o o o| |o o o-o|
  +-------+ +-------+ +-------+ +-------+ +-------+ ...
		

Crossrefs

Even bisection of main diagonal of A239264.

Programs

  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which[n == 0, 1, l[[1 ;; d]] == Array[f &, d], b[n - 1, Join[l[[d + 1 ;; 2*d]], Array[True &, d]]], True, For[k = 1, ! l[[k]], k++]; If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, {k -> f, k + d - 1 -> f}]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, {k -> f, k + d -> f}]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, {k -> f, k + 1 -> f}]], 0]]];
    A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]];
    a[n_] := A[2n, 2n];
    Table[Print[n]; a[n], {n, 0, 7}] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A239264 *)

Formula

a(n) = A239264(2n,2n).

Extensions

a(8) from Alois P. Heinz, Sep 30 2014
a(9) from Alois P. Heinz, Nov 23 2018

A038758 Number of ways of covering a 2n X 2n lattice by 2n^2 dominoes with exactly 4 horizontal (or vertical) dominoes.

Original entry on oeis.org

16, 281, 1785, 7175, 22015, 56406, 126966, 259170, 490050, 871255, 1472471, 2385201, 3726905, 5645500, 8324220, 11986836, 16903236, 23395365, 31843525, 42693035, 56461251, 73744946, 95228050, 121689750, 154012950, 193193091
Offset: 2

Author

Yong Kong (ykong(AT)curagen.com), May 06 2000

Keywords

Examples

			a(3) = 281 because we have 281 ways to cover a 4 X 4 lattice with exactly 4 horizontal dominoes and exactly 14 vertical dominoes.
		

Crossrefs

Programs

  • Magma
    [(1/24)*n*(n-1)*(n+1)*(12*n^3-11*n-10): n in [2..30]]; // Vincenzo Librandi, Oct 22 2013
  • Mathematica
    CoefficientList[Series[(16 + 169 x + 154 x^2 + 21 x^3)/(1 - x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2013 *)

Formula

a(n) = (1/24)*n*(n-1)*(n+1)*(12*n^3-11*n-10).
G.f.: x^2*(16+169*x+154*x^2+21*x^3)/(1-x)^7. [Colin Barker, Jun 26 2012]

Extensions

More terms from James Sellers, May 10 2000
Previous Showing 21-30 of 54 results. Next