cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A261587 Sum of sexagesimal digits of Fibonacci numbers in base-60 representation.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 30, 26, 56, 23, 20, 43, 63, 47, 51, 98, 31, 70, 101, 112, 95, 89, 125, 96, 103, 81, 125, 29, 95, 65, 101, 48, 149, 138, 169, 130, 122, 134, 138, 154, 174, 151, 148, 122, 152, 156, 131, 169, 241, 233, 179, 235, 178, 236
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 09 2015

Keywords

Comments

a(n) is the sum of the n-th row of table A261575.

Crossrefs

Programs

  • Haskell
    a261587 = sum . a261575_row
    
  • Maple
    a:= n-> add(i, i=convert((<<0|1>, <1|1>>^n)[1, 2], base, 60)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 22 2022
  • Mathematica
    Table[Total[IntegerDigits[n,60]],{n,Fibonacci[Range[0,60]]}] (* Harvey P. Dale, Aug 02 2019 *)
  • PARI
    a(n) = sumdigits(fibonacci(n), 60); \\ Michel Marcus, Jan 22 2022

A337448 The numbers k for which Fibonacci(k) are Niven numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 12, 18, 36, 54, 72, 84, 112, 120, 144, 160, 180, 198, 200, 216, 240, 243, 264, 286, 288, 299, 324, 358, 360, 468, 504, 528, 540, 576, 648, 720, 780, 816, 1008, 1020, 1044, 1200, 1248, 1260, 1500, 1602, 1824, 1872, 1917, 2160, 2184, 2760
Offset: 1

Views

Author

Marius A. Burtea, Sep 14 2020

Keywords

Comments

For a(7) = 8, Fibonacci(8) = 21 and 21/digsum(21) = 7 is a prime number, so Fibonacci(8) is a Moran number (A001101). It seems that this is the only Moran number among the first 100000 Fibonacci numbers.

Examples

			Fibonacci(1) = 1 = A005349(1), so 1 is a term.
Fibonacci(8) = 21 = A005349(14), so 8 is a term.
Fibonacci(12) = 144 = A005349(8), so 12 is a term.
Fibonacci(18) = 2584 = A005349(514), so 18 is a term.
		

Crossrefs

Programs

  • Magma
    niven:=func; [k:k in [1..2760]| niven(Fibonacci(k))];
    
  • Mathematica
    nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; Select[Range[3000], nivenQ[Fibonacci[#]] &] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    isok(k) = my(f=fibonacci(k)); (f % sumdigits(f)) == 0; \\ Michel Marcus, Sep 15 2020

A112661 Sum of digits of sum of previous 3 terms.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 8, 4, 3, 6, 4, 4, 5, 4, 4, 4, 3, 2, 9, 5, 7, 3, 6, 7, 7, 2, 7, 7, 7, 3, 8, 9, 2, 10, 3, 6, 10, 10, 8, 10, 10, 10, 3, 5, 9, 8, 4, 3, 6, 4, 4, 5, 4, 4, 4, 3, 2, 9, 5, 7, 3, 6, 7, 7, 2, 7, 7, 7, 3, 8, 9, 2, 10, 3, 6, 10, 10, 8, 10, 10, 10, 3, 5, 9, 8, 4, 3, 6, 4, 4, 5, 4, 4, 4
Offset: 0

Views

Author

Jonathan Vos Post and Andrew Carmichael Post (andrewpost(AT)gmail.com), Dec 29 2005

Keywords

Comments

Sum of digits, not iterated (i.e., not digital sum, reducing to a single digit) as we twice get a term of 10 which we do not reduce to 1. This is to tribonacci (A000073) as A030132 is to Fibonacci (A000045). This sequence has a preamble of 3 terms (1, 1, 1), then enters a cycle of length 39 (ending with 10, 10, 10).

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = Total@ IntegerDigits[a[n-1] + a[n-2] + a[n-3]]; a /@ Range[0, 93] (* Giovanni Resta, Jun 17 2016 *)

Formula

a(n+2) = sum of digits of (a(n) + a(n-1) + a(n-2)). a(n+2) = A007953(a(n) + a(n-1) + a(n-2)).

Extensions

Data and name corrected by Giovanni Resta, Jun 17 2016

A068500 Sequence of Fibonacci numbers whose sum of decimal digits sets a new record.

Original entry on oeis.org

1, 2, 3, 5, 8, 55, 89, 987, 28657, 196418, 1346269, 3524578, 5702887, 39088169, 267914296, 4807526976, 7778742049, 139583862445, 591286729879, 1304969544928657, 5527939700884757, 99194853094755497, 83621143489848422977, 218922995834555169026, 927372692193078999176
Offset: 1

Views

Author

Shyam Sunder Gupta, Mar 25 2002

Keywords

Examples

			a(8)=987 and 9+8+7=24 and sum of digits of any Fibonacci numbers < 987 is also less than 24.
		

Crossrefs

Programs

  • Haskell
    a068500 n = a068500_list !! (n-1)
    a068500_list = h 0 a004090_list a000045_list where
       h r (q:qs) (f:fs) = if q <= r then h r qs fs else f : h q qs fs
    -- Reinhard Zumkeller, Oct 26 2015
    
  • Mathematica
    terms = 30; Reap[For[n = k = 1; record = 0, n <= terms, k++, an = Fibonacci[k]; t = Total[IntegerDigits[an]]; If[t > record, record = t; Print["a(", n, ") = ", an]; Sow[an]; n++]]][[2, 1]] (* Jean-François Alcover, Apr 02 2017 *)
    DeleteDuplicates[Table[{f,Total[IntegerDigits[f]]},{f,Fibonacci[Range[150]]}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Jul 22 2024 *)
  • PARI
    lista(nn) = {s = 0; for (n=1, nn, if ((ns = sumdigits(f=fibonacci(n))) > s, print1(f, ", "); s = ns););} \\ Michel Marcus, Apr 02 2017

A139563 Fibonacci numbers whose digit sum is a Lucas number.

Original entry on oeis.org

1, 2, 3, 13, 21, 34, 610, 196418, 1134903170, 20365011074, 15635695580168194910579363790217849593217, 1049252690665646467530632231274619718410203796555123147644873726135009824265250
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 11 2008

Keywords

Comments

Depending on whether the Lucas numbers are defined by A000032 or by A000204, one obtains this sequence here or A117766. - R. J. Mathar, Nov 03 2008
The next term (a(13)) has 108 digits. - Harvey P. Dale, Jul 01 2022

Examples

			196418 is a Fibonacci number whose digit sum 29 is a Lucas number.
		

Crossrefs

Programs

  • Mathematica
    luQ[n_] := n==2 || Block[{i=1}, While[LucasL[i] < n, i++]; LucasL[i] == n]; Select[
    Fibonacci[ Range[2, 400]], luQ[ Plus @@ IntegerDigits[#]] &] (* Giovanni Resta, Mar 15 2020 *)
    Module[{nn=500,ln=LucasL[Range[0,20]]},Select[Fibonacci[Range[nn]],MemberQ[ ln,Total[ IntegerDigits[ #]]]&]]//Union (* Harvey P. Dale, Jul 01 2022 *)

Extensions

1 added in front by R. J. Mathar, Nov 03 2008
More terms from Jinyuan Wang, Mar 15 2020

A216699 Digital root of cubes of Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8
Offset: 0

Views

Author

Ravi Bhandari, Sep 15 2012

Keywords

Comments

This sequence repeats after every 8 terms, hence this is periodic with period 8.

Crossrefs

Programs

  • Mathematica
    Table[NestWhile[Total[IntegerDigits[#]] &, Fibonacci[n]^3, # > 9 &], {n, 0, 86}] (* T. D. Noe, Oct 15 2012 *)
    Join[{0},LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{1, 1, 8, 9, 8, 8, 1, 9},86]] (* Ray Chandler, Aug 25 2015 *)

A067182 Smallest Fibonacci number with digit sum n, or -1 if no such number exists.

Original entry on oeis.org

0, 1, 2, 3, 13, 5, -1, 34, 8, 144, 55
Offset: 0

Views

Author

Amarnath Murthy, Jan 09 2002

Keywords

Comments

a(n) = Fibonacci(k) where k is the index of the first occurrence of n in A004090, or -1 if n never appears there. - N. J. A. Sloane, Dec 26 2016
Starting at n = 11, the terms a(11), a(12), ... are probably -1, -1, -1, 4181, -1, -1, 89, -1, 2584, 10946, 317811, 1597, 514229, 987, -1, -1, 46368, 28657, 196418, 2178309, 1346269, -1, 701408733, 3524578, 9227465, -1, 5702887, -1, -1, -1, 433494437, -1, 63245986, 39088169, -1, 267914296, -1, ... However, these -1's are only conjectural.
It appears that 0.9*n < A004090(n) < n for all but a few small n: In the range [0..10^5] the slope of A004090 is roughly 0.93. I conjecture that A004090(n) - n has 92 as its maximum, at n = 2619. This would prove that the given -1's are correct. - M. F. Hasler, Dec 26 2016
Joseph Myers and Don Reble proved that a(6) = -1 as follows (cf. Links): If the sum of digits of N is less than 9, then it equals the sum of digits of N modulo 10^k-1 for any k > 0. Now A000045 mod 9999 has period 600 (cf. A001175), and has no term equal to 6. - M. F. Hasler, Dec 28 2016

Examples

			a(14) = 4181, as it is the smallest Fibonacci number with a digit sum of 14.
		

Crossrefs

Programs

Formula

a(n) = min { A000045(k) | A004090(k) = n } U { -1 }. - M. F. Hasler, Dec 26 2016

Extensions

More terms from Frank Ellermann, Jan 18 2002
More terms from Jason Earls, May 27 2002
Edited by M. F. Hasler, Dec 26 2016 and Dec 28 2016
Edited (including changing the value of a(n) for when no k exists from 0 to -1) by N. J. A. Sloane, Dec 29 2016 and Feb 05 2017

A110390 a(n) = F(n) mod s(n) where s(n) is the sum of the digits of the n-th Fibonacci number F(n).

Original entry on oeis.org

1, 0, 6, 5, 4, 0, 1, 3, 1, 3, 13, 0, 9, 21, 6, 14, 13, 9, 13, 2, 1, 18, 18, 9, 1, 9, 2, 3, 30, 0, 12, 21, 38, 3, 27, 38, 2, 3, 2, 13, 3, 18, 34, 1, 5, 3, 28, 0, 1, 21, 14, 38, 1, 18, 40, 1, 2, 30, 65, 21, 34, 48, 64, 55, 45, 0, 49, 33, 60, 63, 3, 24, 5, 21, 2
Offset: 7

Views

Author

Amarnath Murthy, Jul 27 2005

Keywords

Examples

			a(9) = 34 mod 7 = 6.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> irem(f, add(i, i=convert(f, base, 10))))(combinat[fibonacci](n)):
    seq(a(n), n=7..100);  # Alois P. Heinz, Jan 05 2022
  • Mathematica
    Do[k = Fibonacci[n]; Print[Mod[k, Plus @@ IntegerDigits[k]]], {n, 7, 56}] (* Ryan Propper, Aug 14 2005 *)
    Mod[#,Total[IntegerDigits[#]]]&/@Fibonacci[Range[7,70]] (* Harvey P. Dale, Dec 05 2015 *)

Formula

a(n) = A000045(n) mod A007953(A000045(n)) = A000045(n) mod A004090(n).

Extensions

More terms from Ryan Propper, Aug 14 2005
More terms from Harvey P. Dale, Dec 05 2015

A112677 Sum of digits of the sum of the previous 4 terms.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 4, 7, 4, 4, 10, 7, 7, 10, 7, 4, 10, 4, 7, 7, 10, 10, 7, 7, 7, 4, 7, 7, 7, 7, 10, 4, 10, 4, 10, 10, 7, 4, 4, 7, 4, 10, 7, 10, 4, 4, 7, 7, 4, 4, 4, 10, 4, 4, 4, 4, 7, 10, 7, 10, 7, 7, 4, 10, 10, 4, 10, 7, 4, 7, 10, 10, 4, 4, 10, 10, 10, 7, 10, 10, 10, 10
Offset: 0

Views

Author

Jonathan Vos Post, Dec 30 2005

Keywords

Comments

This is to the tetranacci sequence as A112661 is to the tribonacci and as A030132 is to Fibonacci. A000288 is the tetranacci sequence (A000078) but starting with values (1,1,1,1). Andrew Carmichael Post (andrewpost(AT)gmail.com) wrote the program that generated this sequence and showed that for any 4 initial integers a(0),a(1),a(2),a(3) the length of the cycle eventually entered is a factor of 312. For instance, starting with (6,6,6,6) continues in a cycle of length 1 since SOD(6+6+6+6) = SOD(24) = 6; and 1 divides 312. For the SOD(tribonacci) which is A112661, the length of any cycle eventually entered is a factor of 78.
All terms for n >= 4 are 4, 7, or 10. The sequence has period 78; the 78 terms after the initial 1,1,1,1 repeat forever. - Nathaniel Johnston, May 04 2011

Examples

			a(0)=a(1)=a(2)=a(3)=1.
a(4) = SOD(1+1+1+1) = SOD(4) = 4.
a(5) = SOD(1+1+1+4) = SOD(7) = 7.
a(10) = SOD(4+7+4+4) = SOD(19) = 10, note that we do not iterate SOD to reduce 10 to 1.
		

Crossrefs

Programs

  • Maple
    A112677 := proc(n) option remember: if(n<=3)then return 1:fi: return add(d,d=convert(procname(n-1) + procname(n-2) + procname(n-3) + procname(n-4),base,10)): end: seq(A112677(n),n=0..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,Total[IntegerDigits[a+b+c+d]]}; Transpose[ NestList[ nxt,{1,1,1,1},90]][[1]] (* or *) PadRight[{1,1,1,1},120,{10,10,10,10,4,7,4,7,4,4,10,7,7,10,7,4,10,4,7,7,10,10,7,7,7,4,7,7,7,7,10,4,10,4,10,10,7,4,4,7,4,10,7,10,4,4,7,7,4,4,4,10,4,4,4,4,7,10,7,10,7,7,4,10,10,4,10,7,4,7,10,10,4,4,10,10,10,7}](* Harvey P. Dale, Mar 05 2016 *)

Formula

a(0)=a(1)=a(2)=a(3)=1. a(n) = SumDigits(a(n-1) + a(n-2) + a(n-3) + a(n-4)).
a(n) = SumDigits(A000288(n)).
a(n) = A007953(a(n-1) + a(n-2) + a(n-3) + a(n-4)). - Nathaniel Johnston, May 04 2011

Extensions

Name corrected by Nathaniel Johnston, May 04 2011

A139537 Digit sum of Fibonacci primes.

Original entry on oeis.org

2, 3, 5, 4, 17, 8, 22, 28, 23, 41, 37, 98, 116, 112, 343, 424, 388, 409, 473, 526, 527, 2678, 4208, 5102, 8587, 9023, 13576, 24040, 28898, 33787, 35218, 47719, 77842, 98257, 122543, 139256, 188837, 374174, 409118, 555355, 557992, 568246, 873941, 987592, 1210312
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 09 2008

Keywords

Examples

			514229 is a Fibonacci prime whose digit sum is 23.
		

Crossrefs

Subsequence of A004090.

Programs

  • Mathematica
    DigitSum/@Select[Fibonacci[Range[10000]],PrimeQ] (* James C. McMahon, Jun 30 2025 *)

Formula

a(n) = A007953(A005478(n)) and a(n) = A004090(A001605(n)). - Michel Marcus, Jun 30 2025

Extensions

a(22)-a(34) and a(35) onwards (using A001605) from James C. McMahon, Jun 30 2025
Previous Showing 11-20 of 28 results. Next