cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A163632 Triple and reverse digits.

Original entry on oeis.org

1, 3, 9, 72, 612, 6381, 34191, 375201, 3065211, 3365919, 75779001, 300733722, 661102209, 7266033891, 37610189712, 631965038211, 3364115985981, 34975974329001, 300789229729401, 302881986763209, 726982069546809
Offset: 1

Views

Author

Dmitry Kamenetsky, Aug 02 2009

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Mathematica
    a[n_] := a[n] = If[n==1, 1, IntegerReverse[3a[n-1]]];
    Array[a, 40] (* Jean-François Alcover, Jan 01 2021 *)

Extensions

Offset changed from 0 to 1 by Vaclav Kotesovec, Jan 03 2020

A004167 Powers of 3 written backwards.

Original entry on oeis.org

1, 3, 9, 72, 18, 342, 927, 7812, 1656, 38691, 94095, 741771, 144135, 3234951, 9692874, 70984341, 12764034, 361041921, 984024783, 7641622611, 1044876843, 30235306401, 90695018313, 72887134149, 184635924282, 344906882748, 9238285681452, 7894847955267
Offset: 0

Views

Author

Keywords

Comments

From a(2) onwards, all terms are divisible by 9. - Alonso del Arte, Apr 04 2014

Examples

			a(5) = 342 since 3^5 = 243.
		

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Maple
    a:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||(3^n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 09 2015
  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[3^n]]], {n, 0, 26}] (* Alonso del Arte, Apr 04 2014 *)
  • Python
    def A004167(n):
        return int(str(3**n)[::-1]) # Chai Wah Wu, Feb 19 2021

Formula

a(n) = A004086(A000244(n)). - Michel Marcus, Apr 05 2014

Extensions

More terms from Eric M. Schmidt, Apr 04 2014

A057615 ATS: Add Then Sort (i.e., double previous term and then sort digits).

Original entry on oeis.org

1, 2, 4, 8, 16, 23, 46, 29, 58, 116, 223, 446, 289, 578, 1156, 1223, 2446, 2489, 4789, 5789, 11578, 12356, 12247, 24449, 48889, 77789, 155578, 111356, 122227, 244445, 48889, 77789, 155578, 111356, 122227, 244445, 48889, 77789, 155578, 111356
Offset: 1

Views

Author

Henry Bottomley, Oct 09 2000

Keywords

Comments

Starting from a(1)=1 sequence cycles starting from a(25) = 48889, 77789, 155578, 111356, 122227, 244445, 48889, ... etc.

Examples

			a(8)=29 since a(7)=46, 46 + 46 = 92 and 92 sorted is 29.
		

Crossrefs

Cf. A033861 for STA, A004000 for RATS.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Mathematica
    NestList[FromDigits[Sort[IntegerDigits[2#]]]&,1,40] (* Harvey P. Dale, Oct 03 2011 *)
  • Python
    from itertools import accumulate
    def ats(anm1, _): return int("".join(sorted(str(2*anm1))))
    print(list(accumulate([1]*40, ats))) # Michael S. Branicky, Jul 17 2021

Formula

G.f.: x*(-219996*x^29 - 109980*x^28 - 99000*x^27 - 144000*x^26 - 72000*x^25 - 44100*x^24 - 21960*x^23 - 9801*x^22 - 11133*x^21 - 10422*x^20 - 5211*x^19 - 4500*x^18 - 2043*x^17 - 2223*x^16 - 1107*x^15 - 1098*x^14 - 549*x^13 - 243*x^12 - 423*x^11 - 207*x^10 - 108*x^9 - 54*x^8 - 27*x^7 - 45*x^6 - 23*x^5 - 16*x^4 - 8*x^3 - 4*x^2 - 2*x - 1)/(x^6 - 1). - Chai Wah Wu, Nov 20 2018

A057708 Numbers m such that 2^m reversed is prime.

Original entry on oeis.org

1, 4, 5, 7, 10, 17, 24, 37, 45, 55, 70, 77, 107, 137, 150, 271, 364, 1157, 1656, 2004, 2126, 3033, 3489, 3645, 4336, 6597, 7279, 12690, 13840, 20108, 21693, 28888, 84155, 102930
Offset: 1

Views

Author

G. L. Honaker, Jr., Oct 23 2000

Keywords

Comments

a(35) > 105000. - Giovanni Resta, Feb 22 2013
From Bernard Schott, Jan 30 2022: (Start)
If m is an even term, then u = m/2 is a term of A350441, this because 2^m = 4^(m/2). In fact, terms of A350441 are half the even terms of this sequence here.
If m is a term multiple of 3, then k = m/3 is a term of A350442, this because 2^m = 8^(m/3). First examples: m = 24, 45, 150, 1656, ... and corresponding k = 8, 15, 50, 552, ... (End)
a(35) > 200000. - Michael S. Branicky, May 12 2025

Examples

			4 is a term because 2^4 reversed is 61 and prime.
		

Crossrefs

Numbers m such that k^m reversed is prime: this sequence (k=2), A350441 (k=4), A058993 (k=5), A058994 (k=7), A350442 (k=8), A058995 (k=13).

Programs

  • Maple
    with(numtheory): myarray := []: for n from 1 to 4000 do it1 := convert(2^n, base, 10): it2 := sum(10^(nops(it1)-i)*it1[i], i=1..nops(it1)): if isprime(it2) then printf(`%d,`,n) fi: od:
  • Mathematica
    Do[ If[ PrimeQ[ FromDigits[ Reverse[ IntegerDigits[2^n]] ]], Print[ n]], {n, 20000}] (* Robert G. Wilson v, Jan 29 2005 *)
    Select[Range[4400],PrimeQ[IntegerReverse[2^#]]&] (* Requires Mathematica version 10 or later *) (* The program generates the first 25 terms of the sequence; to generate more, increase the Range constant, but the program will take longer to run. *) (* Harvey P. Dale, Aug 05 2020 *)
  • PARI
    isok(m) = isprime(fromdigits(Vecrev(digits(2^m)))) \\ Mohammed Yaseen, Jul 20 2022
  • Python
    from sympy import isprime
    k, m, A057708_list = 1, 2,  []
    while k <= 10**3:
        if isprime(int(str(m)[::-1])):
            A057708_list.append(k)
        k += 1
        m *= 2 # Chai Wah Wu, Mar 09 2021
    

Extensions

More terms from Chris Nash (chris_nash(AT)prodigy.net), Oct 25 2000
Two more terms from Robert G. Wilson v, Jan 29 2001
3 more terms from Farideh Firoozbakht, Aug 05 2004
a(33)-a(34) from Giovanni Resta, Feb 22 2013

A321542 a(0)=1; thereafter a(n) = 3*a(n-1) with digits rearranged into nondecreasing order.

Original entry on oeis.org

1, 3, 9, 27, 18, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135, 45, 135
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Comments

For n >= 5, alternates between 45 and 135.

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

Formula

G.f.: (-117*x^6 - 18*x^5 - 9*x^4 - 24*x^3 - 8*x^2 - 3*x - 1)/(x^2 - 1). - Chai Wah Wu, Nov 20 2018

A028909 Arrange digits of 2^n in ascending order.

Original entry on oeis.org

1, 2, 4, 8, 16, 23, 46, 128, 256, 125, 124, 248, 469, 1289, 13468, 23678, 35566, 11237, 122446, 224588, 145678, 122579, 134449, 368888, 11266777, 23334455, 1466788, 112234778, 234455668, 12356789, 112344778, 1234446788, 2244667999
Offset: 0

Views

Author

Keywords

Comments

Leading zeros are discarded (e.g., 2^23 = 8388608 -> 0368888 becomes 368888).

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Magma
    [Seqint(Reverse(Sort(Intseq(2^n)))):n in [0..35]]; // Vincenzo Librandi, Jan 22 2020
    
  • Maple
    a:= n-> parse(cat(sort(convert(2^n, base, 10))[])):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 21 2020
  • Mathematica
    Table[FromDigits[Sort[IntegerDigits[2^n]]],{n,0,40}] (* Harvey P. Dale, Aug 20 2013 *)
  • Python
    def A028909(n):
        return int(''.join(sorted(str(2**n)))) # Chai Wah Wu, Feb 19 2021

Extensions

More terms from Patrick De Geest, Apr 1998

A028910 Arrange digits of 2^n in descending order.

Original entry on oeis.org

1, 2, 4, 8, 61, 32, 64, 821, 652, 521, 4210, 8420, 9640, 9821, 86431, 87632, 66553, 732110, 644221, 885422, 8765410, 9752210, 9444310, 8888630, 77766211, 55443332, 88766410, 877432211, 866554432, 987653210, 8774432110, 8876444321
Offset: 0

Views

Author

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Magma
    [Seqint(Sort(Intseq(2^n))):n in [0..31]]; // Marius A. Burtea, Oct 06 2019
    
  • Maple
    a:= n-> parse(cat(sort(convert(2^n, base, 10), `>`)[])):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 21 2020
  • Mathematica
    FromDigits[Reverse[Sort[IntegerDigits[#]]]]&/@(2^Range[0,40]) (* Harvey P. Dale, Mar 06 2020 *)
  • Python
    def A028910(n):
        return int(''.join(sorted(str(2**n),reverse=True))) # Chai Wah Wu, Feb 19 2021

Extensions

More terms from Patrick De Geest, Apr 15 1998

A263451 a(n) is the largest anagram of 2*a(n-1), a(1)=1.

Original entry on oeis.org

1, 2, 4, 8, 61, 221, 442, 884, 8761, 75221, 544210, 8842100, 87642100, 875422100, 8754421000, 88754210000, 877542100000, 8755421000000, 87542110000000, 875422100000000, 8754421000000000, 88754210000000000, 877542100000000000, 8755421000000000000
Offset: 1

Views

Author

Zak Seidov, Oct 18 2015

Keywords

Comments

For large n, a(n)/a(n-1) ~ 10.

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Haskell
    a263451 n = a263451_list !! (n-1)
    a263451_list = iterate (a004186 . (* 2)) 1
    -- Reinhard Zumkeller, Oct 19 2015
  • Magma
    [n eq 1 select 1 else Seqint(Sort(Intseq(2*Self(n-1)))): n in [1..30]]; // Bruno Berselli, Oct 19 2015
    
  • Mathematica
    s={1,2,4,8}; a=8; Do[b=FromDigits[Reverse[Sort[IntegerDigits[2*a]]]]; AppendTo[s,a=b],{20}]; s
    NestList[FromDigits[ReverseSort[IntegerDigits[2 #]]]&,1,30] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, May 17 2019 *)

Formula

a(n) >= A036447(n).
From Alois P. Heinz, Oct 19 2015: (Start)
G.f.: x*(99990000000*x^18 +86679000000*x^17 -333332100000*x^16 -13533210000*x^15 +6579000*x^14 +8577900*x^13 +354357900*x^12 +212157900*x^11 +60455790*x^10 +7924779*x^9 +3991239*x^8 +1999116*x^7 +999558*x^6 -221*x^5 -61*x^4 -8*x^3 -4*x^2 -2*x -1) / ((10*x-1) *(1+10*x) *(100*x^2+10*x+1) *(100*x^2-10*x+1)).
a(n) = 10^6 * a(n-6) for n >= 20. (End)
a(n+1) = A004186(2*a(n)). - Reinhard Zumkeller, Oct 19 2015

A321539 3^n with digits rearranged into nonincreasing order.

Original entry on oeis.org

1, 3, 9, 72, 81, 432, 972, 8721, 6651, 98631, 99540, 777411, 544311, 9543321, 9987642, 98744310, 76443210, 964321110, 988744320, 7666422111, 8876444310, 65433321000, 99865331100, 98877443211, 988654432221, 988876444320, 9888655432221
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004186.

Programs

  • Mathematica
    A321539[n_]:=FromDigits[ReverseSort[IntegerDigits[3^n]]];Array[A321539,40,0] (* Paolo Xausa, Aug 10 2023 *)
  • Python
    def A321539(n): return int(''.join(sorted(str(3**n),reverse=True))) # Chai Wah Wu, Nov 10 2022

Formula

a(n) = A004186(A000244(n)). - Michel Marcus, Nov 10 2022

A321540 3^n with digits rearranged into nondecreasing order.

Original entry on oeis.org

1, 3, 9, 27, 18, 234, 279, 1278, 1566, 13689, 4599, 114777, 113445, 1233459, 2467899, 1344789, 1234467, 11123469, 23447889, 1112246667, 134446788, 12333456, 113356899, 11234477889, 122234456889, 23444678889, 1222345568889, 2445567778899
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004185.

Programs

  • Magma
    [Seqint(Reverse(Sort(Intseq(3^n)))):n in [0..35]]; // Vincenzo Librandi, Jan 22 2020
    
  • Mathematica
    Table[FromDigits[Sort[IntegerDigits[3^n]]], {n, 0, 40}] (* Vincenzo Librandi, Jan 22 2020 *)
  • Python
    def A321540(n): return int(''.join(sorted(str(3**n)))) # Chai Wah Wu, Nov 10 2022

Formula

a(n) = A004185(A000244(n)). - Michel Marcus, Nov 10 2022
Previous Showing 11-20 of 31 results. Next