cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A221364 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(3 - sqrt(5)).

Original entry on oeis.org

1, 1, 1, 5, 1, 16, 1, 45, 1, 121, 1, 320, 1, 841, 1, 2205, 1, 5776, 1, 15125, 1, 39601, 1, 103680, 1, 271441, 1, 710645, 1, 1860496, 1, 4870845, 1, 12752041, 1, 33385280, 1, 87403801, 1, 228826125, 1, 599074576, 1, 1568397605, 1, 4106118241, 1, 10749957120, 1, 28143753121
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 3. See also A221365 (N = 5), A221366 (N = 7), A221369 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(3 - sqrt(5)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. Examples are given below.

Examples

			F(1/2*(3 - sqrt(5))) = 1.53879 34992 88095 08323 ... = 1 + 1/(1 + 1/(1 + 1/(5 + 1/(1 + 1/(16 + 1/(1 + 1/(45 + ...))))))).
F((1/2*(3 - sqrt(5)))^2) = 1.16725 98258 10214 95210 ... = 1 + 1/(5 + 1/(1 + 1/(45 + 1/(1 + 1/(320 + 1/(1 + 1/(2205 + ...))))))).
F((1/2*(3 - sqrt(5)))^3) = 1.05883 42773 67371 19975 ... = 1 + 1/(16 + 1/(1 + 1/(320 + 1/(1 + 1/(5776 + 1/(1 + 1/(103680 + ...))))))).
		

Crossrefs

Cf. A001906, A002878, A004146, A049684, A081070, A081071, A174500 (N = 4), A221365 (N = 5), A221366 (N = 7), A221369 (N = 9).

Formula

a(2*n-1) = (1/2*(3 + sqrt(5)))^n + (1/2*(3 - sqrt(5)))^n - 2 = A004146(n); a(2*n) = 1.
a(4*n+1) = A081071(n) = A002878(n)^2;
a(4*n-1) = A081070(n) = 5*A049684(n) = 5*(A001906(n))^2.
a(n) = 4*a(n-2)-4*a(n-4)+a(n-6). G.f.: -(x^4+x^3-3*x^2+x+1) / ((x-1)*(x+1)*(x^2-x-1)*(x^2+x-1)). - Colin Barker, Jan 20 2013

Extensions

More terms from Michel Marcus, Feb 21 2025

A249450 a(n) = Fibonacci(2*n) - 2.

Original entry on oeis.org

-2, -1, 1, 6, 19, 53, 142, 375, 985, 2582, 6763, 17709, 46366, 121391, 317809, 832038, 2178307, 5702885, 14930350, 39088167, 102334153, 267914294, 701408731, 1836311901, 4807526974, 12586269023, 32951280097, 86267571270, 225851433715, 591286729877
Offset: 0

Views

Author

Vincenzo Librandi, Dec 15 2014

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n)-2: n in [0..40]];
    
  • Mathematica
    Table[Fibonacci[2 n] - 2, {n, 0, 40}] (* or *) CoefficientList[Series[(-2 + 7 x - 3 x^2) / (1 - 4 x + 4 x^2 - x^3), {x, 0, 40}], x]
    LinearRecurrence[{4, -4, 1}, {-2, -1, 1}, 30] (* Robert G. Wilson v, Dec 19 2014 *)
  • PARI
    Vec((-2+7*x-3*x^2)/(1-4*x+4*x^2-x^3) + O(x^30)) \\ Colin Barker, Nov 03 2016

Formula

G.f.: (-2+7*x-3*x^2)/(1-4*x+4*x^2-x^3).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) for n>2.
a(n) = 3*a(n-1) - a(n-2) + 2.
a(n) = (-2-((3-sqrt(5))/2)^n/sqrt(5)+((3+sqrt(5))/2)^n/sqrt(5)). - Colin Barker, Nov 03 2016
E.g.f.: 2*exp(3*x/2)*sinh(sqrt(5)*x/2)/sqr(5) - 2*exp(x). - Stefano Spezia, Jun 02 2024

A158753 Triangle T(n, k) = A000032(2*(n-k) + 1), read by rows.

Original entry on oeis.org

1, 4, 1, 11, 4, 1, 29, 11, 4, 1, 76, 29, 11, 4, 1, 199, 76, 29, 11, 4, 1, 521, 199, 76, 29, 11, 4, 1, 1364, 521, 199, 76, 29, 11, 4, 1, 3571, 1364, 521, 199, 76, 29, 11, 4, 1, 9349, 3571, 1364, 521, 199, 76, 29, 11, 4, 1, 24476, 9349, 3571, 1364, 521, 199, 76, 29, 11, 4, 1
Offset: 2

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 25 2009

Keywords

Examples

			Triangle begins as:
     1;
     4,   1;
    11,   4,   1;
    29,  11,   4,  1;
    76,  29,  11,  4,  1;
   199,  76,  29, 11,  4,  1;
   521, 199,  76, 29, 11,  4,  1;
  1364, 521, 199, 76, 29, 11,  4,  1;
		

References

  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp. 159-162.

Crossrefs

Programs

  • Magma
    [Lucas(2*n-2*k+1): k in [2..n], n in [2..16]]; // G. C. Greubel, Dec 06 2021
    
  • Mathematica
    Table[LucasL[2*(n-k) + 1], {n, 2, 16}, {k, 2, n}]//Flatten (* G. C. Greubel, Dec 06 2021 *)
  • Sage
    flatten([[lucas_number2(2*(n-k)+1, 1, -1) for k in (2..n)] for n in (2..16)]) # G. C. Greubel, Dec 06 2021

Formula

T(n, k) = 5*e(n, k), where e(n,k) = (e(n-1, k)*e(n, k-1) + 1)/e(n-1, k-1), and e(n, 0) = GoldenRatio^(n) + GoldenRatio^(-n).
Sum_{k=0..n} T(n, k) = A004146(n-1).
T(n, k) = A000032(2*(n-k) + 1). - G. C. Greubel, Dec 06 2021

Extensions

Edited by G. C. Greubel, Dec 06 2021

A158786 Irregular triangle T(n, k) = A000032(n-2*k+1) if (n-2*k) mod 2 = 0, otherwise 25*A000032(n-2*k), read by rows.

Original entry on oeis.org

1, 25, 4, 1, 100, 25, 11, 4, 1, 275, 100, 25, 29, 11, 4, 1, 725, 275, 100, 25, 76, 29, 11, 4, 1, 1900, 725, 275, 100, 25, 199, 76, 29, 11, 4, 1, 4975, 1900, 725, 275, 100, 25, 521, 199, 76, 29, 11, 4, 1, 13025, 4975, 1900, 725, 275, 100, 25, 1364, 521, 199, 76, 29, 11, 4, 1, 34100, 13025, 4975, 1900, 725, 275, 100, 25
Offset: 2

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 26 2009

Keywords

Examples

			Irregular triangle begins as:
     1;
    25;
     4,    1;
   100,   25;
    11,    4,   1;
   275,  100,  25;
    29,   11,   4,   1;
   725,  275, 100,  25;
    76,   29,  11,   4,  1;
  1900,  725, 275, 100, 25;
   199,   76,  29,  11,  4,   1;
  4975, 1900, 725, 275, 100, 25;
		

References

  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp. 159-162.

Crossrefs

Programs

  • Mathematica
    (* First program *)
    e[n_, 0]:= Sqrt[5]*(GoldenRatio^(n) + GoldenRatio^(-n));
    e[n_, k_]:= If[k>n-1, 0, (e[n-1, k]*e[n, k-1] +1)/e[n-1, k-1]];
    T[n_,k_]:= 5*Rationalize[N[e[n, k]]];
    Table[T[n, k], {n, 2, 16}, {k, Mod[n, 2] +1, n-1,2}]//Flatten
    (* Second program *)
    f[n_]:= f[n]= If[EvenQ[n], LucasL[n-1], 25*LucasL[n-2]];
    T[n_, k_]:= f[n-2*k];
    Table[T[n, k], {n, 2, 16}, {k, 0, (n-2)/2}]//Flatten (* G. C. Greubel, Dec 06 2021 *)
  • Sage
    def A158786(n,k): return lucas_number2(n-2*k-1,1,-1) if ((n-2*k)%2==0) else 25*lucas_number2(n-2*k-2,1,-1)
    flatten([[A158786(n,k) for k in (0..((n-2)//2))] for n in (2..16)]) # G. C. Greubel, Dec 06 2021

Formula

T(n, k) = 5*e(n, k), where e(n,k) = (e(n-1, k)*e(n, k-1) + 1)/e(n-1, k-1), and e(n, 0) = sqrt(5)*(GoldenRatio^(n) + GoldenRatio^(-n)).
From G. C. Greubel, Dec 06 2021: (Start)
T(n, k) = A000032(n-2*k+1) if (n-2*k) mod 2 = 0, otherwise 25*A000032(n-2*k).
Sum_{k=0..floor(n/2)} T(n, k) = A000032(n) - 2 if (n mod 2 = 0), otherwise 25*(A000032(n-1) - 2). (End)

Extensions

Edited by G. C. Greubel, Dec 06 2021

A256233 a(n) = L(2*n+1) - 2, where L is A000032.

Original entry on oeis.org

-1, 2, 9, 27, 74, 197, 519, 1362, 3569, 9347, 24474, 64077, 167759, 439202, 1149849, 3010347, 7881194, 20633237, 54018519, 141422322, 370248449, 969323027, 2537720634, 6643838877, 17393795999, 45537549122, 119218851369, 312119004987, 817138163594
Offset: 0

Views

Author

Vincenzo Librandi, Mar 20 2015

Keywords

Crossrefs

Programs

  • Magma
    [Lucas(n)-2: n in [1..70 by 2]];
    
  • Mathematica
    Table[LucasL[n] - 2, {n, 1, 70, 2}] (* or *) LinearRecurrence[{4, -4, 1}, {-1, 2, 9}, 40]
  • PARI
    Vec((-1+6*x-3*x^2)/((1-x)*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Nov 03 2016
    
  • PARI
    L(n) = round(((1+sqrt(5))/2)^n + ((1-sqrt(5))/2)^n)
    vector(30, n, n--; L(2*n+1)-2) \\ Colin Barker, Nov 03 2016

Formula

G.f.: (-1+6*x-3*x^2)/((1-x)*(1-3*x+x^2)).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
a(n) = (-2+(2^(-1-n)*((3-sqrt(5))^n*(-5+sqrt(5))+(3+sqrt(5))^n*(5+sqrt(5))))/sqrt(5)). - Colin Barker, Nov 03 2016

Extensions

Incorrect comment about A004146 removed by Georg Fischer, Sep 04 2020

A328055 Expansion of e.g.f. -log(1 - x / (1 - x)^2).

Original entry on oeis.org

0, 1, 5, 32, 270, 2904, 38400, 605520, 11113200, 232888320, 5488560000, 143704108800, 4138573824000, 130020673305600, 4425201196416000, 162194862064435200, 6369479157000960000, 266808274486161408000, 11874724379464826880000, 559591797303082672128000
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2019

Keywords

Comments

a(n) is the number of ways to choose one element from each branch of labeled octopuses with n nodes (cf. A029767 and example below). - Enrique Navarrete, Oct 29 2023

Examples

			For n=2, the 3 labeled octopuses are the following, and there are 2+2+1 ways to choose one element from each branch:
O-1-2;
O-2-1;
1-O-2. - _Enrique Navarrete_, Oct 29 2023
		

Crossrefs

Cf. A001906, A004146, A005248, A005443, A029767, A052567 (exponential transform), A100404, A226968, A328054.

Programs

  • Magma
    [0] cat [Factorial(n - 1)*(Lucas(2*n)-2):n in [1..20]]; // Marius A. Burtea, Oct 03 2019
    
  • Mathematica
    nmax = 19; CoefficientList[Series[-Log[1 - x/(1 - x)^2], {x, 0, nmax}], x] Range[0, nmax]!
    Join[{0}, Table[(n - 1)! (LucasL[2 n] - 2), {n, 1, 19}]]
  • PARI
    my(x='x+O('x^20)); concat(0, Vec(serlaplace(-log(1 - x / (1 - x)^2)))) \\ Michel Marcus, Oct 03 2019

Formula

E.g.f.: log(1 + Sum_{k>=1} Fibonacci(2*k) * x^k).
a(n) = (n - 1)! * (Lucas(2*n) - 2) for n > 0.

A328987 The sequence C(n) defined in the comments (A and B smallest missing numbers, offset 0).

Original entry on oeis.org

3, 10, 15, 20, 27, 32, 39, 44, 51, 56, 61, 68, 73, 80, 85, 90, 97, 102, 109, 114, 119, 126, 131, 138, 143, 150, 155, 160, 167, 172, 179, 184, 189, 196, 201, 208, 213, 220, 225, 230, 237, 242, 249, 254, 259, 266, 271, 278, 283, 290, 295, 300, 307, 312, 319
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2019

Keywords

Comments

Define a triple of sequences A,B,C by A[0]=1, B[0]=2, C[0]=3; for n>=1, A[n] = smallest missing number from the terms of A,B,C defined so far; B[n] = = smallest missing number from the terms of A,B,C defined so far; C[n] = n+A[n]+B[n].
Then A = A086377, B = A080652, C = the present sequence.
Inspired by the triples [A003144, A003145, A004146] and [A298468, A298469, A047218].

Examples

			The initial terms are:
n: 0, 1, 2, 3, 4,  5,  6,  7,  8.  9. 10. ...
a: 1, 4, 6, 8, 11, 13, 16, 18, 21, 23,25, ...
b: 2, 5, 7, 9, 12, 14, 17, 19, 22, 24,26, ...
c: 3, 10, 15, 20, 27, 32, 39, 44, 51, 56, 61, 68, 73, ...
		

Crossrefs

Formula

Conjectures from Colin Barker, Nov 08 2019: (Start)
G.f.: (3 + 7*x + 5*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 7*x^6 + 5*x^7 + 7*x^8 + 5*x^9 + 5*x^10 + 7*x^11 + 2*x^12 - 2*x^20 + 2*x^21) / (1 - x - x^12 + x^13).
a(n) = a(n-1) + a(n-12) - a(n-13) for n>21.
(End)
Conjecture: a(n) ~ 35*n/6. - Stefano Spezia, Nov 02 2021

A340561 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n-1} Product_{b=1..k-1} (4*sin(a*Pi/n)^2 + 4*cos(b*Pi/k)^2) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 12, 16, 4, 1, 1, 29, 75, 45, 5, 1, 1, 70, 361, 384, 121, 6, 1, 1, 169, 1728, 3509, 1805, 320, 7, 1, 1, 408, 8281, 31500, 30976, 8100, 841, 8, 1, 1, 985, 39675, 284089, 508805, 261725, 35287, 2205, 9, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 11 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,      1,       1, ...
  1, 2,   5,   12,     29,      70, ...
  1, 3,  16,   75,    361,    1728, ...
  1, 4,  45,  384,   3509,   31500, ...
  1, 5, 121, 1805,  30976,  508805, ...
  1, 6, 320, 8100, 261725, 7741440, ...
		

Crossrefs

Columns 1..4 give A000012, A000027, A004146, A006235.
Rows 1..3 give A000012, A000129, A005386.
Main diagonal gives A340563.
T(n, 2*n) gives A252767.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(sqrt(prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*cos(b*Pi/k)^2))))}

A355645 The number of regions in the G-Shi arrangement when G is the cycle graph C_n.

Original entry on oeis.org

1, 3, 16, 61, 206, 659, 2052, 6297, 19162, 58015, 175088, 527333, 1586118, 4766571, 14316124, 42981169, 129009074, 387158327, 1161737160, 3485735805, 10458256030, 31376865283, 94134790196, 282412759241, 847255054986, 2541798719439, 7625463267232
Offset: 1

Views

Author

Robin Truax, Jul 11 2022

Keywords

Comments

The G-Shi arrangement of a graph G is the hyperplane arrangement given by hyperplanes x_i - x_j = 0 and x_i - x_j = 1 for each edge {i,j} of G with i < j.
a(n) is also the number of parking functions of length n with all cars preferring to park in the first 3 spots. - Jayden Thadani, May 20 2024

Crossrefs

Cf. A004146 (cycle graph labels).
Cf. A000244 (path graph regions), A001906 (path graph labels).

Programs

  • Mathematica
    A355645[n_] := If[n == 1, 1, 3^n - 2^n - n]; Array[A355645, 50] (* or *)
    LinearRecurrence[{7, -17, 17, -6}, {1, 3, 16, 61, 206}, 50] (* Paolo Xausa, May 24 2024 *)

Formula

a(n) = 3^n - 2^n - n for n >= 2.
G.f.: x*(1 - 4*x + 12*x^2 - 17*x^3 + 6*x^4)/((1 - x)^2*(1 - 2*x)*(1 - 3*x)). - Stefano Spezia, Jul 12 2022

A365907 Smallest nonnegative integer that is not the sum of fewer than n signed Lucas numbers.

Original entry on oeis.org

0, 1, 5, 16, 63, 262, 1105, 4676, 19803, 83882, 355325, 1505176, 6376023, 27009262, 114413065, 484661516, 2053059123, 8696898002, 36840651125, 156059502496, 661078661103, 2800374146902, 11862575248705, 50250675141716, 212865275815563, 901711778403962
Offset: 0

Views

Author

Mike Speciner, Sep 22 2023

Keywords

Comments

Signed Lucas numbers are the union of A000032 and A061084.

Examples

			a(0) = 0, the sum of 0 Lucas numbers.
a(1) = 1 = A000032(1), the sum of 1 Lucas number.
a(2) = 5 = 1+4 = A000032(1)+A000032(3), the sum of 2 Lucas numbers. (2, 3, and 4 need only one term, since they are Lucas numbers.)
a(4) = 63 = 1+4+11+47.
For comparison, 45 is the first sum requiring 4 positive Lucas numbers (45 = 1+4+11+29, see A004146), but here 45 = 47+2-4 requires only 3 signed Lucas numbers so that a(4) != 45.
		

Crossrefs

Cf. A000032, A061084, A004146 (analogous with only positive Lucas numbers).

Programs

  • Mathematica
    LinearRecurrence[{5, -3, -1}, {0, 1, 5, 16, 63}, 26] (* Amiram Eldar, Sep 26 2023 *)
  • Python
    from sympy import lucas
    a = lambda n: n if n<2 else (lucas(3*n-2)+3)//2

Formula

a(n) = n, for n<2.
a(n) = (A000032(3*n-2)+3)/2 = 1+4+Sum_{i=2..n-1} A000032(3*n-1), for n>1.
G.f.: x*(1 - 6*x^2 - x^3)/((1 - x)*(1 - 4*x - x^2)). - Stefano Spezia, Sep 25 2023
Previous Showing 21-30 of 36 results. Next