cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A109408 Cubes whose digits sum to a prime.

Original entry on oeis.org

2197, 2744, 4096, 4913, 10648, 12167, 15625, 21952, 39304, 50653, 103823, 140608, 195112, 262144, 300763, 314432, 405224, 438976, 614125, 1191016, 1225043, 1643032, 2197000, 2406104, 2685619, 2744000, 2863288, 3112136, 4096000
Offset: 1

Views

Author

Zak Seidov, Jun 28 2005

Keywords

Crossrefs

Corresponding primes in A109410.

Programs

  • Mathematica
    A109408=Select[Table[n^3, {n, 200}], PrimeQ[Plus@@IntegerDigits[ # ]]&];

Formula

a(n) = (A076204(n))^3.

A109410 Prime numbers p such that p = digit sum of cubes in A109408.

Original entry on oeis.org

19, 17, 19, 17, 19, 17, 19, 19, 19, 19, 17, 19, 19, 19, 19, 17, 17, 37, 19, 19, 17, 19, 19, 17, 37, 17, 37, 17, 19, 37, 37, 17, 37, 37, 37, 37, 37, 37, 37, 19, 17, 19, 37, 37, 17, 37, 37, 37, 19, 37, 37, 37, 37, 19, 37, 37, 37, 37, 37, 37, 37, 17, 37, 37, 37, 37, 37, 37, 37
Offset: 1

Views

Author

Zak Seidov, Jun 28 2005

Keywords

Comments

Corresponding n in A076204, n^3 in A109408. A004164 Sum of digits of cubes.

Crossrefs

Programs

  • Mathematica
    Select[Total[IntegerDigits[#]]&/@(Range[1000]^3),PrimeQ] (* Harvey P. Dale, Jul 16 2017 *)

Formula

A109410(n) = digit_sum(A109408(n)).

A237525 Numbers k such that the sum of digits of k^3 is a cube.

Original entry on oeis.org

0, 1, 2, 5, 8, 10, 11, 20, 27, 33, 36, 39, 42, 50, 54, 57, 69, 72, 75, 78, 80, 84, 87, 93, 100, 101, 105, 108, 110, 111, 114, 135, 138, 147, 162, 165, 168, 174, 177, 200, 219, 222, 225, 228, 231, 234, 258, 267, 270, 273, 276, 285, 291, 294, 312
Offset: 1

Views

Author

Derek Orr, Feb 09 2014

Keywords

Comments

If k is in the sequence then so is 10*k. - David A. Corneth, May 26 2021

Examples

			36^3 = 46656. DigitSum(46656) = 27 (also a cube). So, 36 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    isok(n) = ispower(sumdigits(n^3), 3); \\ Michel Marcus, Feb 09 2014

Formula

a(n) = A053058(n)^(1/3).

A336225 Table read by antidiagonals: T(n, k) = digitsum(n*k) with n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 1, 3, 3, 1, 6, 0, 0, 7, 3, 6, 7, 6, 3, 7, 0, 0, 8, 5, 9, 2, 2, 9, 5, 8, 0, 0, 9, 7, 3, 6, 7, 6, 3, 7, 9, 0, 0, 1, 9, 6, 10, 3, 3, 10, 6, 9, 1, 0, 0, 2, 2, 9, 5, 8, 9, 8, 5, 9, 2, 2, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 12 2020

Keywords

Examples

			The table T(n, k) begins
0   0   0   0   0   0   0   0 ...
0   1   2   3   4   5   6   7 ...
0   2   4   6   8   1   3   5 ...
0   3   6   9   3   6   9   3 ...
0   4   8   3   7   2   6  10 ...
0   5   1   6   2   7   3   8 ...
0   6   3   9   6   3   9   6 ...
0   7   5   3  10   8   6  13 ...
...
		

Crossrefs

Cf. A003991, A004092, A004159 (diagonal), A004164 (digitsum of n^3), A004247, A007953, A055565 (digitsum of n^4), A055566 (digitsum of n^5), A055567 (digitsum of n^6).

Programs

  • Mathematica
    T[n_,k_]:=Total[IntegerDigits[n*k]]; Table[T[n-k,k],{n,0,12},{k,0,n}]//Flatten
  • PARI
    T(n, k) = sumdigits(n*k);

Formula

T(n, k) = A007953(A004247(n, k)).
T(n, 1) = T(1, n) = A007953(n).
T(n, 2) = T(2, n) = A004092(n).
T(n, k) = A007953(A003991(n, k)) for n*k > 0. - Michel Marcus, Jul 13 2020.

A071121 a(n) = a(n-1) + sum of decimal digits of n^3.

Original entry on oeis.org

1, 9, 18, 28, 36, 45, 55, 63, 81, 82, 90, 108, 127, 144, 162, 181, 198, 216, 244, 252, 270, 289, 306, 324, 343, 369, 396, 415, 441, 450, 478, 504, 531, 550, 576, 603, 622, 648, 675, 685, 711, 738, 766, 792, 810, 838, 855, 873, 901, 909, 927, 946, 981, 1008
Offset: 1

Views

Author

Labos Elemer, May 27 2002

Keywords

References

  • N. Agronomof, Question 4420, L'Intermédiaire des Math. 21 (1914), 147.

Crossrefs

Partial sums of A004164.

Programs

  • Mathematica
    s=0; Do[s=s+Apply[Plus, IntegerDigits[n^3]]; Print[s], {n, 1, 128}]
    nxt[{n_,a_}]:={n+1,a+Total[IntegerDigits[(n+1)^3]]}; NestList[nxt,{1,1},60][[;;,2]] (* Harvey P. Dale, Aug 30 2025 *)

A118470 Numbers k for which digitsum(k) + digitsum(k^2) + digitsum(k^3) = digitsum(k^4).

Original entry on oeis.org

0, 162, 171, 351, 468, 558, 1620, 1710, 2106, 3321, 3510, 4023, 4680, 5121, 5247, 5544, 5580, 5868, 8001, 10008, 10071, 10224, 10305, 10503, 10818, 11025, 11241, 11511, 12321, 12654, 12888, 13239, 14004, 14301, 15471, 15876, 16011, 16200, 16218, 17100
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 04 2006

Keywords

Comments

If x is a term, then so is 10*x. - Michael S. Branicky, Dec 25 2021

Examples

			162 is a term because s(162) = 9, s(162^2) = 18, s(162^3) = 27, s(162^4) = 54 and 9 + 18 + 27 = 54.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 20000], Sum[i*(DigitCount[ # ][[i]] + DigitCount[ #^2][[i]] + DigitCount[ #^3][[i]]), {i, 1, 9}] == Sum[i*DigitCount[ #^4][[i]], {i, 1, 9}] &] (* Stefan Steinerberger, May 04 2006 *)
    s[n_] := Plus @@ IntegerDigits@n; Select[ Range[0, 16217], s@# + s[ #^2] + s[ #^3] == s[ #^4] &] (* Robert G. Wilson v, May 04 2006 *)
    Parallelize[While[True,If[Total[IntegerDigits[n]]+Total[IntegerDigits[n^2]]+Total[IntegerDigits[n^3]]==Total[IntegerDigits[n^4]],Print[n]];n++];n] (* J.W.L. (Jan) Eerland, Dec 25 2021 *)
  • PARI
    is(n)=my(s=sumdigits); s(n)+s(n^2)+s(n^3) == s(n^4) \\ Anders Hellström, Sep 16 2015
    
  • PARI
    select(isA118470(n)={sumdigits(n)+sumdigits(n^2)+sumdigits(n^3) == sumdigits(n^4)}, [0..1000]) \\ J.W.L. (Jan) Eerland, Dec 25 2021
    
  • Python
    def sd(n): return sum(map(int, str(n)))
    def ok(n): return sd(n) + sd(n**2) + sd(n**3) == sd(n**4)
    print([k for k in range(20000) if ok(k)]) # Michael S. Branicky, Dec 25 2021

Extensions

More terms from Joshua Zucker, May 11 2006

A235399 Numbers which are the digital sum of the cube of some prime.

Original entry on oeis.org

8, 9, 10, 17, 19, 26, 28, 35, 37, 44, 46, 53, 55, 62, 64, 71, 73, 80, 82, 89, 91, 98, 100, 107, 109, 116, 118, 125, 127, 134, 136, 143, 145, 152, 154, 161, 163, 170, 172, 179, 181, 188, 190, 197, 199, 206, 208, 215, 217, 224, 226, 233, 235, 242, 244, 251, 253
Offset: 1

Views

Author

Keywords

Comments

A235398 sorted and duplicates removed.

Crossrefs

Programs

  • Mathematica
    Total[IntegerDigits[#]] & /@ (Prime[Range[5000000]]^3) // Union (* The program generates the first 39 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Sep 19 2021 *)
  • PARI
    list(maxx)={v=List();n=2; while(n<=maxx,q=n^3;summ=sumdigits(q);
    if(setsearch(v,summ)<1,listput(v,summ));n=nextprime(n+1));vecsort(v,,8) ;} \\ Bill McEachen, Jan 29 2014

Formula

Conjecture: for n > 4, a(n) = a(n-2) + 9 = A056020(n).
Conjecture: a(n) = (1/4)*(-1)^n*(9*(-1)^n*(2*n-1) + 5), n >= 3. - Bill McEachen, Feb 13 2021

Extensions

a(37)-a(57) from Lars Blomberg, Feb 10 2016

A309017 Numbers that divide the sum of the digits of their cubes.

Original entry on oeis.org

1, 2, 3, 8, 9, 17, 18, 26, 27
Offset: 1

Views

Author

Kritsada Moomuang, Jul 06 2019

Keywords

Comments

There are no further terms since the cubes between 28 and 50 that have the highest sums of digits are 31, 46 and 49. The sum of digits of the cubes of 31, 46 and 49 are 28. 28 is not divisible by 31, 46 or 49. So it is impossible that any number greater than 50 can divide the sum of digits of its cube.
0 is not in the term because 0 divided by 0 is undefined.

Examples

			8 is in the sequence because 8^3 = 512 and 5 + 1 + 2 = 8, and 8/8 = 1.
		

Crossrefs

Cf. A000578 (n^3), A004164 (sum of digits of n^3).

Programs

  • Mathematica
    Select[Range[1000], Divisible[Plus@@IntegerDigits[#^3], #] &] (* Alonso del Arte, Jul 07 2019 *)
  • PARI
    isok(n) = !(sumdigits(n^3) % n); \\ Michel Marcus, Jul 07 2019

A358982 In base 10, for all numbers with n digits, a(n) is the number where the sum of digits of a(n) minus the sum of the last n digits of a(n)^3 reaches a record maximum.

Original entry on oeis.org

8, 87, 887, 8887, 99868, 978887, 7978887, 96699868, 987978887, 9896699868, 89987978887, 969896699868, 7969896699868, 97969896699868, 897969896699868, 9988999939998887, 99988999939998887, 999988999939998887, 8999988999939998887, 78999988999939998887
Offset: 1

Views

Author

Martin Raab, Dec 08 2022

Keywords

Comments

The corresponding last n digits of a(n)^3 are 2, 03, 103, 0103, 00032, 110103, 1110103, 00100032, 011110103, 0300100032, ...
The corresponding differences between the digit sums are 6, 12, 19, 27, 35, 41, 47, 55, 63, 69, 77, 84, 91, 99, 107, 115, 124, 132, ...
Question: what constant does the ratio between the maximum differences and n converge to?
In case of a tie, only the smallest example is given. For example, n=7, a(n)=9899868 would also meet the criterion. Other cases of a tie happen at n=10, 12, 13, 14, 28, 29, 31, ...

Examples

			The digit sum of 7978887 is 54, the digit sum of 7978887^3 mod 10^7 = 1110103 is 7. 54-7=47, which means that randomly finding numbers for which the sum of digits of x^3 is smaller than the sum of digits of x is easiest when choosing x with the given seven ending digits (that is, of course, depending on the preferred size of x).
Heuristically it can be conjectured that there are infinitely many numbers x for which the digit sum of x^3 is smaller than the digit sum of x.
		

Crossrefs

Programs

  • PARI
    a(n)={r=0; i=10^n; for(x=1, i-1, s1=sumdigits(x); s2=sumdigits(x^3%i); d=s2-s1; if(d
    				
  • PARI
    /* The following program finds the first 69 terms, and also many of the larger terms, correctly. The 70th term will be incorrect because of the truncation to 10^4*(9/10)=9000 record numbers for each number of digits; if the truncation is increased to 10^5*(9/10) records (n=5 at the beginning), the first 237 terms give a(n) with corresponding maxima. (Further restrictions on ending digits find optimal solutions for a higher number of digits.) */
    {n=4; d=10^n; v=vector(d*9/10); print("keeping "#v" record numbers"); w=vector(d*9); for(x=1, d-1, if(x%10, y=sumdigits((x^3)%d); z=sumdigits(x); v[9*(x\10)+(x%10)]=x+d*(y-z))); v=vecsort(v); while(d<10^250, for(i=1, #v, for(j=0, 9, x=d*j+v[i]%d; y=sumdigits((x^3)%(d*10)); z=sumdigits(x); w[10*(i-1)+j+1]=x+d*10*(y-z))); d*=10; n++; w=vecsort(w); v=vecextract(w,Str("1.."#v)); print(n" digits - record differences: "vecextract(v,"1..5")\d" / record mod "10"^"n": "v[1]%d))}

A372924 a(n) = (sum_digits(n^3)-n)/3.

Original entry on oeis.org

0, 0, 2, 2, 2, 1, 1, 1, 0, 3, -3, -1, 2, 2, 1, 1, 1, 0, 0, 3, -4, -1, -1, -2, -2, -2, 0, 0, -3, -1, -7, -1, -2, -2, -5, -3, -3, -6, -4, -4, -10, -5, -5, -5, -6, -9, -6, -10, -10, -7, -14, -11, -11, -6, -9, -9, -10, -10, -13, -11, -17, -11, -12, -15, -15, -13, -10
Offset: 0

Views

Author

Guy Harari, May 16 2024

Keywords

Comments

a(n) + floor((n+1)/3) is always a multiple of 3. - Jon E. Schoenfield, May 18 2024

Examples

			For n=42, 42^3 = 74088 has sum of digits 27 so a(42) = (27 - 42)/3 = -5.
		

Crossrefs

Cf. A004164.

Programs

  • C
    #include 
    #include 
    int32_t sumDigits(int64_t num)
    {
      int32_t sum = 0;
      while (num > 0)
      {
        sum += num % 10;
        num /= 10;
      }
      return sum;
    }
    int main()
    {
      for (int64_t i=0; i<10000; ++i)
      {
        int64_t num = i * i * i;
        int32_t sum = sumDigits(num);
        printf("%ld, ", (sum - i)/3);
      }
      return 0;
    }
  • Maple
    read("transforms"):
    A372924 := proc(n)
        (digsum(n^3)-n)/3 ;
    end proc:
    seq(A372924(n),n=0..80) ; # R. J. Mathar, Jul 03 2024
  • Mathematica
    Table[(DigitSum[n^3] - n)/3, {n, 0, 100}] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = (A004164(n)-n)/3.
Previous Showing 11-20 of 21 results. Next