cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A263451 a(n) is the largest anagram of 2*a(n-1), a(1)=1.

Original entry on oeis.org

1, 2, 4, 8, 61, 221, 442, 884, 8761, 75221, 544210, 8842100, 87642100, 875422100, 8754421000, 88754210000, 877542100000, 8755421000000, 87542110000000, 875422100000000, 8754421000000000, 88754210000000000, 877542100000000000, 8755421000000000000
Offset: 1

Views

Author

Zak Seidov, Oct 18 2015

Keywords

Comments

For large n, a(n)/a(n-1) ~ 10.

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Haskell
    a263451 n = a263451_list !! (n-1)
    a263451_list = iterate (a004186 . (* 2)) 1
    -- Reinhard Zumkeller, Oct 19 2015
  • Magma
    [n eq 1 select 1 else Seqint(Sort(Intseq(2*Self(n-1)))): n in [1..30]]; // Bruno Berselli, Oct 19 2015
    
  • Mathematica
    s={1,2,4,8}; a=8; Do[b=FromDigits[Reverse[Sort[IntegerDigits[2*a]]]]; AppendTo[s,a=b],{20}]; s
    NestList[FromDigits[ReverseSort[IntegerDigits[2 #]]]&,1,30] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, May 17 2019 *)

Formula

a(n) >= A036447(n).
From Alois P. Heinz, Oct 19 2015: (Start)
G.f.: x*(99990000000*x^18 +86679000000*x^17 -333332100000*x^16 -13533210000*x^15 +6579000*x^14 +8577900*x^13 +354357900*x^12 +212157900*x^11 +60455790*x^10 +7924779*x^9 +3991239*x^8 +1999116*x^7 +999558*x^6 -221*x^5 -61*x^4 -8*x^3 -4*x^2 -2*x -1) / ((10*x-1) *(1+10*x) *(100*x^2+10*x+1) *(100*x^2-10*x+1)).
a(n) = 10^6 * a(n-6) for n >= 20. (End)
a(n+1) = A004186(2*a(n)). - Reinhard Zumkeller, Oct 19 2015

A321539 3^n with digits rearranged into nonincreasing order.

Original entry on oeis.org

1, 3, 9, 72, 81, 432, 972, 8721, 6651, 98631, 99540, 777411, 544311, 9543321, 9987642, 98744310, 76443210, 964321110, 988744320, 7666422111, 8876444310, 65433321000, 99865331100, 98877443211, 988654432221, 988876444320, 9888655432221
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004186.

Programs

  • Mathematica
    A321539[n_]:=FromDigits[ReverseSort[IntegerDigits[3^n]]];Array[A321539,40,0] (* Paolo Xausa, Aug 10 2023 *)
  • Python
    def A321539(n): return int(''.join(sorted(str(3**n),reverse=True))) # Chai Wah Wu, Nov 10 2022

Formula

a(n) = A004186(A000244(n)). - Michel Marcus, Nov 10 2022

A052008 a(n) = 'n with digits sorted in ascending order' + 'n with digits sorted in descending order'.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 66, 77, 88, 99, 110, 121
Offset: 0

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

a(n) = A004185(n) + A004186(n). - Reinhard Zumkeller, Jun 07 2015

Examples

			E.g., n = 19 -> 19 + 91 = 110.
		

Crossrefs

Cf. A052009; different from A056964.

Programs

  • Haskell
    a052008 n = a004185 n + a004186 n  -- Reinhard Zumkeller, Jun 07 2015
    
  • Mathematica
    f[n_]:=Module[{sidn=Sort[IntegerDigits[n]]},FromDigits[sidn]+ FromDigits[ Reverse[sidn]]]; Array[f,70,0] (* Harvey P. Dale, Nov 13 2011 *)
  • PARI
    for(n=0,100,D=digits(n);R=Vecrev(D);print1(sum(i=1,#D,10^(i-1)*(D[i]+R[i])),", ")) \\ Derek Orr, Feb 26 2017

A227362 Distinct digits of n arranged in decreasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 21, 31, 41, 51, 61, 71, 81, 91, 20, 21, 2, 32, 42, 52, 62, 72, 82, 92, 30, 31, 32, 3, 43, 53, 63, 73, 83, 93, 40, 41, 42, 43, 4, 54, 64, 74, 84, 94, 50, 51, 52, 53, 54, 5, 65, 75, 85, 95, 60, 61, 62, 63, 64, 65, 6, 76, 86
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 09 2013

Keywords

Comments

a(n) <= 9876543210; a(a(n)) = a(n);
A055642(a(n)) <= 10;
A055642(a(n)) <= A055642(n), A055642(a(n)) = A055642(n) iff A178788(n) = 1;
a(A109303(n)) < A109303(n); a(A009995(n)) = A009995(n); a(A071589(n)) > A071589(n);
a(n) = A151949(n) + A180410(n).

Crossrefs

Programs

  • Haskell
    import Data.List (nub, sort)
    a227362 = read . reverse . sort . nub . show :: Integer -> Integer
    
  • Maple
    a:= n-> parse(cat(sort([{convert(n, base, 10)[]}[]], `>`)[])):
    seq(a(n), n=0..68);  # Alois P. Heinz, Sep 21 2022
  • Mathematica
    f[n_] := FromDigits[Reverse@ Union@ IntegerDigits@ n]; f /@ Range[0, 68] (* Michael De Vlieger, Apr 16 2015, corrected by Robert G. Wilson v *)
  • PARI
    a(n) = {if (n == 0, d = [0], d = digits(n)); eval(subst(Pol(vecsort(d,,12)), x, 10));} \\ Michel Marcus, Apr 16 2015
    
  • PARI
    a(n)=fromdigits(vecsort(digits(n),,12)) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    def A227362(n): return int(''.join(sorted(set(str(n)),reverse=True))) # Chai Wah Wu, Nov 23 2022

A215014 Numbers where any two consecutive decimal digits differ by 1 after arranging the digits in decreasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 21, 23, 32, 34, 43, 45, 54, 56, 65, 67, 76, 78, 87, 89, 98, 102, 120, 123, 132, 201, 210, 213, 231, 234, 243, 312, 321, 324, 342, 345, 354, 423, 432, 435, 453, 456, 465, 534, 543, 546, 564, 567, 576, 645, 654, 657, 675, 678, 687, 756, 765, 768, 786, 789, 798, 867
Offset: 1

Views

Author

Keywords

Comments

a(4091131) = 9876543210 is the last term.
Numbers n such that A004186(n) is a term of A033075. - Felix Fröhlich, Dec 26 2017
Also 0 together with positive integers having k distinct digits and the difference between the largest and the smallest digit equal to k-1. - David A. Corneth, Dec 26 2017

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[If[Times @@ Differences@Sort@IntegerDigits[n] == 1, AppendTo[lst, n]], {n, 0, 675}]; lst (* Arkadiusz Wesolowski, Aug 01 2012 *)
    Join[Range[0,9],Select[Range[1000],Union[Differences[Sort[ IntegerDigits[ #]]]] == {1}&]] (* Harvey P. Dale, Jan 14 2015 *)
  • PARI
    is(n)=my(v=vecsort(eval(Vec(Str(n)))));for(i=2,#v,if(v[i]!=1+v[i-1],return(0)));1
    
  • PARI
    is(n) = if(!n, return(1)); my(d = digits(n), v = vecsort(d,,8)); #d == #v && v[#v] - v[1] == #v - 1
    
  • Python
    # Ely Golden, Dec 26 2017
    def consecutive(li):
      for i in range(len(li)-1):
        if(li[i+1]!=1+li[i]): return False
      return True
    def sorted_digits(n):
      lst=[]
      while(n>0):
        lst+=[n%10] ; n//=10
      lst.sort() ; return lst
    j=0
    for i in range(1,10001):
      while(not consecutive(sorted_digits(j))): j+=1
      print(str(i)+" "+str(j)) ; j+=1
    
  • Python
    # alternate for generating full sequence in seconds
    from itertools import permutations as perms
    frags = ["0123456789"[i:j] for i in range(10) for j in range(i+1, 11)]
    afull = sorted(set(int("".join(s)) for f in frags for s in perms(f)))
    print(afull[:70]) # Michael S. Branicky, Aug 04 2022

Formula

If zero is excluded, the number of terms with k digits, 1 <= k <= 10, is (11-k)*k! - (k-1)!. - Franklin T. Adams-Watters, Aug 01 2012

Extensions

Name edited by Felix Fröhlich, Dec 26 2017

A319722 Write n in 5-ary, sort digits into decreasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 11, 16, 21, 10, 11, 12, 17, 22, 15, 16, 17, 18, 23, 20, 21, 22, 23, 24, 25, 30, 55, 80, 105, 30, 31, 56, 81, 106, 55, 56, 61, 86, 111, 80, 81, 86, 91, 116, 105, 106, 111, 116, 121, 50, 55, 60, 85, 110, 55, 56, 61, 86, 111, 60, 61, 62, 87, 112, 85
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2018

Keywords

Crossrefs

b-ary: A073138 (b=2), A319651 (b=3), A319720 (b=4), this sequence (b=5), A319723 (b=6), A319724 (b=7), A319725 (b=8), A319726 (b=9), A004186 (b=10).

Programs

  • Mathematica
    Table[FromDigits[ReverseSort[IntegerDigits[n, 5]], 5], {n, 0, 100}] (* Paolo Xausa, Aug 07 2024 *)
  • PARI
    a(n) = fromdigits(vecsort(digits(n, 5), , 4), 5); \\ Michel Marcus, Sep 26 2018
  • Ruby
    def A(k, n)
      (0..n).map{|i| i.to_s(k).split('').sort.reverse.join.to_i(k)}
    end
    p A(5, 100)
    

Formula

n <= a(n) < 5n. - Charles R Greathouse IV, Aug 07 2024

A319723 Write n in 6-ary, sort digits into decreasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 13, 19, 25, 31, 12, 13, 14, 20, 26, 32, 18, 19, 20, 21, 27, 33, 24, 25, 26, 27, 28, 34, 30, 31, 32, 33, 34, 35, 36, 42, 78, 114, 150, 186, 42, 43, 79, 115, 151, 187, 78, 79, 85, 121, 157, 193, 114, 115, 121, 127, 163, 199, 150, 151, 157, 163
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2018

Keywords

Crossrefs

b-ary: A073138 (b=2), A319651 (b=3), A319720 (b=4), A319722 (b=5), this sequence (b=6), A319724 (b=7), A319725 (b=8), A319726 (b=9), A004186 (b=10).

Programs

  • Mathematica
    Table[FromDigits[ReverseSort[IntegerDigits[n, 6]], 6], {n, 0, 100}] (* Paolo Xausa, Aug 07 2024 *)
  • PARI
    a(n) = fromdigits(vecsort(digits(n, 6), , 4), 6); \\ Michel Marcus, Sep 26 2018
  • Ruby
    def A(k, n)
      (0..n).map{|i| i.to_s(k).split('').sort.reverse.join.to_i(k)}
    end
    p A(6, 100)
    

Formula

n <= a(n) < 6n. - Charles R Greathouse IV, Aug 07 2024

A328447 Smallest representative of the class of numbers having the same digits as n up to permutation.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 12, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 23, 33, 34, 35, 36, 37, 38, 39, 40, 14, 24, 34, 44, 45, 46, 47, 48, 49, 50, 15, 25, 35, 45, 55, 56, 57, 58, 59, 60, 16, 26, 36, 46, 56, 66, 67, 68, 69, 70, 17, 27, 37, 47, 57, 67
Offset: 0

Views

Author

M. F. Hasler, Oct 15 2019

Keywords

Comments

Sort the digits in increasing order. If the list starts with a digit 0, move the smallest nonzero digit to the front.
Every term is in A179239. - David A. Corneth, Oct 17 2019

Examples

			a(201) = 102: largest digits go to the end, but the smallest nonzero digit must go first.
		

Crossrefs

Cf. A179239, A004186 (largest representative of the class of n).

Programs

  • Maple
    f:= proc(n) local L,i,t;
      L:= sort(convert(n,base,10));
      if L[1]=0 then
        t:= numboccur(0,L)+1;
        L:= [L[t],op(L[1..t-1]),op(L[t+1..-1])];
      fi;
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    f(0):= 0:
    map(f, [$0..100]);
  • Mathematica
    Array[FromDigits@ If[First@ # == 0, Flatten@ MapAt[Reverse, TakeDrop[#, 2], 1], #] &@ Sort@ IntegerDigits[#] &, 67] (* Michael De Vlieger, Oct 17 2019 *)
  • PARI
    A328447(n)={if(n=vecsort(digits(n)), n[1]|| for(k=2,#n,n[k]&&[n[1]=n[k],n[k]=0,break]));fromdigits(n)}
    
  • Python
    def A328447(n):
        if n == 0: return 0
        s = str(n)
        l, s = len(s), ''.join(sorted(s.replace('0','')))
        return int(s[0]+'0'*(l-len(s))+s[1:]) # Chai Wah Wu, Dec 06 2021

A319651 Largest number having in its ternary representation the same number of 0's, 1's and 2's as n.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 7, 8, 9, 12, 21, 12, 13, 22, 21, 22, 25, 18, 21, 24, 21, 22, 25, 24, 25, 26, 27, 36, 63, 36, 39, 66, 63, 66, 75, 36, 39, 66, 39, 40, 67, 66, 67, 76, 63, 66, 75, 66, 67, 76, 75, 76, 79, 54, 63, 72, 63, 66, 75, 72, 75, 78, 63, 66, 75, 66, 67, 76, 75, 76
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2018

Keywords

Crossrefs

Base b: A073138 (b=2), this sequence (b=3), A319720 (b=4), A319722 (b=5), A319723 (b=6), A319724 (b=7), this sequence (b=8), A319726 (b=9), A004186 (b=10).
Cf. A038574.

Programs

  • Mathematica
    Table[FromDigits[ReverseSort[IntegerDigits[n, 3]], 3], {n, 0, 100}] (* Paolo Xausa, Aug 07 2024 *)
  • PARI
    a(n) = fromdigits(vecsort(digits(n, 3),,4), 3); \\ Michel Marcus, Sep 25 2018
    
  • Python
    from gmpy2 import digits
    def A319651(n):
        return int(''.join(sorted(digits(n,3),reverse=True)),3) # Chai Wah Wu, Sep 26 2018
  • Ruby
    def A(k, n)
      (0..n).map{|i| i.to_s(k).split('').sort.reverse.join.to_i(k)}
    end
    p A(3, 100)
    

Formula

n <= a(n) < 3n. - Charles R Greathouse IV, Aug 07 2024

A319724 Write n in 7-ary, sort digits into decreasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 15, 22, 29, 36, 43, 14, 15, 16, 23, 30, 37, 44, 21, 22, 23, 24, 31, 38, 45, 28, 29, 30, 31, 32, 39, 46, 35, 36, 37, 38, 39, 40, 47, 42, 43, 44, 45, 46, 47, 48, 49, 56, 105, 154, 203, 252, 301, 56, 57, 106, 155, 204, 253, 302, 105, 106, 113, 162
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2018

Keywords

Crossrefs

b-ary: A073138 (b=2), A319651 (b=3), A319720 (b=4), A319722 (b=5), A319723 (b=6), this sequence (b=7), A319725 (b=8), A319726 (b=9), A004186 (b=10).

Programs

  • Mathematica
    Table[FromDigits[ReverseSort[IntegerDigits[n, 7]], 7], {n, 0, 100}] (* Paolo Xausa, Aug 07 2024 *)
  • PARI
    a(n) = fromdigits(vecsort(digits(n, 7), , 4), 7); \\ Michel Marcus, Sep 26 2018
  • Ruby
    def A(k, n)
      (0..n).map{|i| i.to_s(k).split('').sort.reverse.join.to_i(k)}
    end
    p A(7, 100)
    

Formula

n <= a(n) < 7n. - Charles R Greathouse IV, Aug 07 2024
Previous Showing 11-20 of 40 results. Next