cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A110307 Expansion of (1+2*x)/((1+x+x^2)*(1+5*x+x^2)).

Original entry on oeis.org

1, -4, 17, -80, 384, -1842, 8827, -42292, 202631, -970862, 4651680, -22287540, 106786021, -511642564, 2451426797, -11745491420, 56276030304, -269634660102, 1291897270207, -6189851690932, 29657361184451, -142096954231322, 680827409972160, -3262040095629480
Offset: 0

Views

Author

Creighton Dement, Jul 19 2005

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+2*x)/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 03 2023
    
  • Maple
    seriestolist(series((1+2*x)/((x^2+x+1)*(x^2+5*x+1)), x=0,25));
  • Mathematica
    LinearRecurrence[{-6,-7,-6,-1}, {1,-4,17,-80}, 41] (* G. C. Greubel, Jan 03 2023 *)
  • PARI
    Vec((1+2*x)/((1+x+x^2)*(1+5*x+x^2)) + O(x^25)) \\ Colin Barker, Apr 30 2019
    
  • SageMath
    def U(n,x): return chebyshev_U(n, x)
    def A110307(n): return (1/4)*(3*U(n,-5/2) +U(n-1,-5/2) +U(n,-1/2) -U(n-1,-1/2))
    [A110307(n) for n in range(41)] # G. C. Greubel, Jan 03 2023

Formula

a(n+2) = - 5*a(n+1) - a(n) - A099837(n+1).
a(n) + a(n+1) + a(n+2) = A002320(n).
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, Apr 30 2019
a(n) = (1/4)*(3*U(n,-5/2) + U(n-1,-5/2) + U(n,-1/2) - U(n-1,-1/2)), where U(n, x) = ChebyshevU(n, x). - G. C. Greubel, Jan 03 2023

A110308 Expansion of -x*(2+x)/((1+x+x^2)*(1+5*x+x^2)).

Original entry on oeis.org

0, -2, 11, -52, 247, -1182, 5664, -27140, 130037, -623044, 2985181, -14302860, 68529120, -328342742, 1573184591, -7537580212, 36114716467, -173036002122, 829065294144, -3972290468600, 19032387048857, -91189644775684, 436915836829561, -2093389539372120
Offset: 0

Views

Author

Creighton Dement, Jul 19 2005

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( -x*(2+x)/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 03 2023
    
  • Maple
    seriestolist(series(-x*(2+x)/((x^2+x+1)*(x^2+5*x+1)), x=0,25));
  • Mathematica
    LinearRecurrence[{-6,-7,-6,-1}, {0,-2,11,-52}, 40] (* G. C. Greubel, Jan 03 2023 *)
  • PARI
    concat(0, Vec(-x*(2+x)/((1+x+x^2)*(1+5*x+x^2)) + O(x^25))) \\ Colin Barker, Apr 30 2019
    
  • SageMath
    def U(n, x): return chebyshev_U(n,x)
    def A110308(n): return (1/4)*(2*U(n, -5/2) +U(n-1, -5/2) -2*U(n, -1/2) -U(n-1, -1/2))
    [A110308(n) for n in range(41)] # G. C. Greubel, Jan 03 2023

Formula

a(n+2) = - 5*a(n+1) - a(n) - A099837(n+2).
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, Apr 30 2019
a(n) = (1/4)*(2*U(n, -5/2) + U(n-1, -5/2) - 2*U(n, -1/2) - U(n-1, -1/2)), where U(n, x) = ChebyshevU(n, x). - G. C. Greubel, Jan 03 2023

A110309 Expansion of (1+3*x+x^2)/((1+x+x^2)*(1+5*x+x^2)).

Original entry on oeis.org

1, -3, 12, -57, 275, -1320, 6325, -30303, 145188, -695637, 3332999, -15969360, 76513801, -366599643, 1756484412, -8415822417, 40322627675, -193197315960, 925663952125, -4435122444663, 21249948271188, -101814618911277, 487823146285199, -2337301112514720
Offset: 0

Views

Author

Creighton Dement, Jul 19 2005

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+3*x+x^2)/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 03 2023
    
  • Maple
    seriestolist(series((1+3*x+x^2)/((x^2+5*x+1)*(x^2+x+1)), x=0,25));
  • Mathematica
    LinearRecurrence[{-6,-7,-6,-1}, {1,-3,12,-57}, 40] (* G. C. Greubel, Jan 03 2023 *)
  • PARI
    Vec((1+3*x+x^2)/((1+x+x^2)*(1+5*x+x^2)) + O(x^25)) \\ Colin Barker, Apr 30 2019
    
  • SageMath
    def A110309(n): return (1/2)*(chebyshev_U(n,-5/2)+chebyshev_U(n,-1/2))
    [A110309(n) for n in range(41)] # G. C. Greubel, Jan 03 2023

Formula

a(n+2) = - 5*a(n+1) - a(n) + (-1)^n*A109265(n+3).
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, Apr 30 2019
a(n) = (1/2)*(ChebyshevU(n, -5/2) + ChebyshevU(n, -1/2)). - G. C. Greubel, Jan 03 2023

A110310 Expansion of (1-x+x^2)/((x^2+x+1)*(x^2+5*x+1)).

Original entry on oeis.org

1, -7, 36, -173, 827, -3960, 18973, -90907, 435564, -2086913, 9998999, -47908080, 229541401, -1099798927, 5269453236, -25247467253, 120967883027, -579591947880, 2776991856373, -13305367333987, 63749844813564, -305443856733833, 1463469438855599, -7011903337544160
Offset: 0

Views

Author

Creighton Dement, Jul 19 2005

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2)/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 02 2023
    
  • Maple
    seriestolist(series((1-x+x^2)/((x^2+x+1)*(x^2+5*x+1)), x=0,25));
  • Mathematica
    LinearRecurrence[{-6,-7,-6,-1}, {1,-7,36,-173}, 40] (* G. C. Greubel, Jan 02 2023 *)
  • PARI
    Vec((1-x+x^2)/((1+x+x^2)*(1+5*x+x^2)) + O(x^25)) \\ Colin Barker, Apr 30 2019
    
  • SageMath
    def U(n,x): return chebyshev_U(n,x)
    def A110310(n): return (1/2)*(3*U(n, -5/2) - U(n, -1/2))
    [A110310(n) for n in range(41)] # G. C. Greubel, Jan 02 2023

Formula

a(n+2) = - 5*a(n+1) - a(n) - (-1)^n*A109265(n+3).
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, Apr 30 2019
a(n) = (1/2)*(3*ChevyshevU(n, -5/2) - ChebyshevU(n, -1/2)). - G. C. Greubel, Jan 02 2023

A110311 Expansion of 1/((1+x+x^2)*(1+5*x+x^2)).

Original entry on oeis.org

1, -6, 29, -138, 660, -3162, 15151, -72594, 347819, -1666500, 7984680, -38256900, 183299821, -878242206, 4207911209, -20161313838, 96598657980, -462831976062, 2217561222331, -10624974135594, 50907309455639, -243911573142600, 1168650556257360, -5599341208144200
Offset: 0

Views

Author

Creighton Dement, Jul 19 2005

Keywords

Comments

In reference to the program code, A004254(n+1) = 1ibaseiseq[A*B](n).
Superseeker finds: a(n) + a(n+1) + a(n+2) = (-1)^n*A004254(n+3).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 02 2023
    
  • Maple
    seriestolist(series(1/((x^2+5*x+1)*(x^2+x+1)), x=0,25));
  • Mathematica
    LinearRecurrence[{-6,-7,-6,-1}, {1,-6,29,-138}, 40] (* G. C. Greubel, Jan 02 2023 *)
  • PARI
    Vec(1/((1+x+x^2)*(1+5*x+x^2)) + O(x^25)) \\ Colin Barker, May 14 2019
    
  • SageMath
    def U(n,x): return chebyshev_U(n,x)
    def A110311(n): return (1/4)*(5*U(n, -5/2) + U(n-1, -5/2) - U(n, -1/2) - U(n-1, -1/2))
    [A110311(n) for n in range(41)] # G. C. Greubel, Jan 02 2023

Formula

a(n+2) = - 5*a(n+1) - a(n) + ((-1)^n)*A109265(n+1)/2.
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, May 14 2019
a(n) = (1/4)*(5*U(n, -5/2) + U(n-1, -5/2) - U(n, -1/2) - U(n-1, -1/2)), where U(n, x) = ChebyshevU(n, x). - G. C. Greubel, Jan 02 2023

A180142 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + x - x^2)/(1 - 3*x - 3*x^2).

Original entry on oeis.org

1, 4, 14, 54, 204, 774, 2934, 11124, 42174, 159894, 606204, 2298294, 8713494, 33035364, 125246574, 474845814, 1800277164, 6825368934, 25876938294, 98106921684, 371951579934, 1410175504854, 5346381254364, 20269670277654, 76848154596054, 291353474621124
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
The sequence above corresponds to 16 A[5] vectors with decimal values between 3 and 384. These vectors lead for the corner squares to A123620 and for the central square to A155116.
This sequence appears among the members of a family of sequences with g.f. (1 + x - k*x^2)/(1 - 3*x + (k-4)*x^2). Berserker sequences that are members of this family are 4*A007482 (k=2; with leading 1 added), A180142 (k=1; this sequence), A000302 (k=0), A180140 (k=-1) and 4*A154964 (k=-2; n>=1 and a(0)=1). Some other members of this family are 2*A180148 (k=3; with leading 1 added), 4*A025192 (k=4; with leading 1 added), 2*A005248 (k=5; with leading 1 added) and A123932 (k=6).

Crossrefs

Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square).

Programs

  • Maple
    with(LinearAlgebra): nmax:=23; m:=2; A[5]:=[0,0,0,0,0,0,0,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
    # second Maple program:
    a:= n-> ceil((<<0|1>, <3|3>>^n. <<2/3, 4>>)[1,1]):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 14 2021
  • Mathematica
    LinearRecurrence[{3, 3}, {1, 4, 14}, 26] (* Jean-François Alcover, Jan 18 2025 *)

Formula

G.f.: (1 + x - x^2)/(1 - 3*x - 3*x^2).
a(n) = 3*a(n-1) + 3*a(n-2) for n >= 2 with a(0)=1, a(1)=4 and a(2)=14.
a(n) = (6-2*A)*A^(-n-1)/21 + (6-2*B)*B^(-n-1)/21 with A=(-3+sqrt(21))/6 and B=(-3-sqrt(21))/6.
Lim_{k->infinity} a(2*n+k)/a(k) = 2*A000244(n)/(A003501(n) - A004254(n)*sqrt(21)) for n >= 1.
Lim_{k->infinity} a(2*n-1+k)/a(k) = 2*A000244(n)/(A004253(n)*sqrt(21) - 3*A030221(n-1)) for n >= 1.

A160695 Integers m such that 3*m+1 and 7*m+1 are both perfect squares.

Original entry on oeis.org

0, 5, 120, 2760, 63365, 1454640, 33393360, 766592645, 17598237480, 403992869400, 9274237758725, 212903475581280, 4887505700610720, 112199727638465285, 2575706229984090840, 59129043561995624040, 1357392295695915262085, 31160893757444055403920
Offset: 1

Views

Author

Paul Weisenhorn, May 24 2009

Keywords

Comments

The ansatz 3*a(n)+1=A^2, 7*a(n)+1=B^2 is equivalent to the Pell equation x^2-21*y^2=1 (see A077232 for d=21), with x=(21*a(n)+5)/2 and y=A*B/2.
The associated A are in A004253, the B in A030221.
Bisection of A089927. - R. J. Mathar, Jul 10 2009

Crossrefs

Programs

  • Maple
    j:=0: for n from 0 to 1000000 do a:=sqrt(3*n+1): b:=sqrt(7*n+1):
    if (trunc(a)=a) and (trunc(b)=b) then j:=j+1: print(j,n,a,b): end if:
    end do:
  • Mathematica
    LinearRecurrence[{24,-24,1},{0,5,120},30] (* Harvey P. Dale, Dec 17 2013 *)

Formula

a(n) = 24*a(n-1) - 24*a(n-2) + a(n-3).
a(n) = (A004253(n)^2 - 1)/3 = (A030221(n)^2 - 1)/7.
a(n) = ((5+w)/2*((23+5*w)/2)^(n-1) + (5-w)/2*((23-5*w)/2)^(n-1) - 5)/21; where w=sqrt(21). [Corrected by Kevin Ryde, Sep 11 2020]
G.f.: 5*x^2/((1-x)*(x^2-23*x+1)). - R. J. Mathar, Jul 10 2009
From Francesca Arici, Sep 12 2020: (Start)
a(n) = 23*a(n-1) - a(n-2) + 5.
a(n) = A004254(n)* A004254(n+1). (End)
a(n) = 5*A334673(n-1). - Hugo Pfoertner, Apr 07 2021

Extensions

Edited and extended by R. J. Mathar, Jul 10 2009
Name edited by Michel Marcus, Sep 12 2020

A237254 Values of x in the solutions to x^2 - 5xy + y^2 + 5 = 0, where 0 < x < y.

Original entry on oeis.org

1, 2, 3, 9, 14, 43, 67, 206, 321, 987, 1538, 4729, 7369, 22658, 35307, 108561, 169166, 520147, 810523, 2492174, 3883449, 11940723, 18606722, 57211441, 89150161, 274116482, 427144083, 1313370969, 2046570254, 6292738363, 9805707187, 30150320846, 46981965681
Offset: 1

Views

Author

Colin Barker, Feb 05 2014

Keywords

Comments

The corresponding values of y are given by a(n+2).
Also the solutions to 21x^2-20 is a perfect square. - Jaimal Ichharam, Jul 13 2014

Examples

			9 is in the sequence because (x, y) = (9, 43) is a solution to x^2 - 5xy + y^2 + 5 = 0.
		

Crossrefs

Programs

  • Maple
    A237254 := proc(n)
        coeftayl( -x*(x-1)*(x^2+3*x+1) / (x^4-5*x^2+1), x=0, n);
    end proc:
    seq(A237254(n), n=1..40); # Wesley Ivan Hurt, Jul 14 2014
  • Mathematica
    Rest[CoefficientList[Series[- x (x - 1) (x^2 + 3 x + 1)/(x^4 - 5 x^2 + 1), {x, 0, 40}], x]] (* Vincenzo Librandi, Jul 01 2014 *)
    LinearRecurrence[{0,5,0,-1},{1,2,3,9},40] (* Harvey P. Dale, Aug 24 2024 *)
  • PARI
    Vec(-x*(x-1)*(x^2+3*x+1)/(x^4-5*x^2+1) + O(x^100))

Formula

a(n) = 5*a(n-2)-a(n-4).
G.f.: -x*(x-1)*(x^2+3*x+1) / (x^4-5*x^2+1).

A125078 Fifth in an infinite set of generalized Pascal's triangles, with trigonometric properties.

Original entry on oeis.org

1, 1, 4, 1, 5, 19, 1, 9, 24, 91, 1, 10, 63, 115, 436, 1, 14, 73, 397, 551, 2089, 1, 15, 132, 470, 2358, 2640, 10009, 1, 19, 147, 1043, 2828, 13482, 12649, 47956, 1, 20, 226, 1190, 7441, 16310, 75061, 60605, 229771
Offset: 1

Views

Author

Gary W. Adamson, Nov 18 2006

Keywords

Comments

The triangle is the fifth in an infinite set of generalized Pascal's triangles constrained by two properties: row sums = powers of N and upward sloping diagonals solve for N + 2*Cos 2Pi/Q. Row sums are powers of 5. Right border (1, 4, 19, 91, 436...) = A004253. Next to right border (1, 5, 24, 115...) = A004254.

Examples

			First few rows of the triangle are:
1;
1, 4;
1, 5, 19;
1, 9, 24, 91;
1, 10, 63, 115, 436;
1, 14, 73, 397, 551, 2089;
1, 15, 132, 470, 2358, 2640, 10009;
...
The upward sloping diagonal (1, 14, 63, 91) is derived from the characteristic polynomial x^3 - 14x^2 + 63x - 91 and relates to the Heptagon (Q=7) since a root = 6.24697960...= 5 + 2*Cos 2Pi/7. The corresponding matrix is [4, 1, 0; 1, 5, 1; 0, 1, 5]. The next upward sloping diagonal (1, 15, 73, 115) relates to the Octagon (Q=8) since a root = 6.41421356... = 5 + 2*Cos 2Pi/8. The corresponding matrix is [5, 1, 0; 1, 5, 1; 0, 1, 5].
		

Crossrefs

Formula

Upward sloping diagonals are derived from interleaved characteristic polynomials of two types of matrices, relating to odd and even polygons. Matrices with an eigenvalue 5 + 2*Cos 2Pi/Q, Q is odd, are of the form: all 1's in the super and subdiagonals and 4,5,5,5... in the main diagonal. Matrices (Q is even) are of the form: all 1's in the super and subdiagonals and 5,5,5... in the main diagonal.

A136210 Numerators in continued fraction [0; 1, 3, 1, 3, 1, 3, ...].

Original entry on oeis.org

1, 3, 4, 15, 19, 72, 91, 345, 436, 1653, 2089, 7920, 10009, 37947, 47956, 181815, 229771, 871128, 1100899, 4173825, 5274724, 19997997, 25272721, 95816160, 121088881, 459082803, 580171684, 2199597855, 2779769539, 10538906472
Offset: 1

Views

Author

Gary W. Adamson, Dec 21 2007

Keywords

Comments

A136210(n)/A136211(n) tends to 0.7912878474... = (sqrt(21) - 3)/2 = continued fraction [0; 1, 3, 1, 3, 1, 3, ...] = the inradius of a right triangle with hypotenuse 5, legs 2 and sqrt(21).
This is a strong divisibility sequence, that is, GCD(a(n),a(m)) = a(GCD(n,m)) for all natural numbers n and m. - Peter Bala, May 14 2014

Examples

			a(4) = 15 = 3*a(3) + a(2) = 3*4 + 3.
a(5) = 19 = a(4) + a(3) = 15 + 4.
T^3 = [19, 72; 24, 91], where [19, 72] = [a(5), a(6)]. [24, 91] = [A136211(5), A136211(6)].
G.f. = x + 3*x^2 + 4*x^3 + 15*x^4 + 19*x^5 + 72*x^6 + 91*x^7 + 345*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a = {1, 3}; Do[If[EvenQ[n], AppendTo[a, 3*a[[ -1]] + a[[ -2]]], AppendTo[a, a[[ -1]] + a[[ -2]]]], {n, 3, 30}]; a (* Stefan Steinerberger, Dec 31 2007 *)
    a[n_] := FromContinuedFraction[ Join[{0}, 3 - 2*Array[Mod[#, 2]&, n]]] // Numerator; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 15 2014 *)
  • PARI
    {a(n) = (-1)^((n+1) * (n<0)) * polcoeff( x * (1 + 3*x - x^2) / (1 - 5*x^2 + x^4) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, May 15 2014 */

Formula

a(0) = 0, a(1) = 1, a(2n) = 3*a(2n-1) + a(2n-2); a(2n-1) = a(2n-2) + a(2n-3). Given the 2 X 2 matrix [1, 3; 1, 4] = T, [a(2n-1), a(2n)] = top row of T^n.
g.f.: x*(1+3*x-x^2)/(1-5*x^2+x^4). - Colin Barker, Jan 04 2012
a(-n) = -(-1)^n * a(n). a(2*n - 1) = A004253(n). a(2*n) = 3 * A004254(n). - Michael Somos, May 15 2014
a(n+1) - a(n-1) = a(n) * (2 - (-1)^n) for all n in Z. - Michael Somos, May 15 2014

Extensions

More terms from Stefan Steinerberger, Dec 31 2007
Previous Showing 21-30 of 39 results. Next