cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A386501 Numbers k divisible by A004719(k), excluding trivial cases.

Original entry on oeis.org

105, 108, 405, 1001, 1005, 1008, 1020, 2002, 2025, 2040, 2050, 3003, 3060, 4004, 4005, 4080, 5005, 6006, 6075, 7007, 7050, 8008, 9009, 10005, 10008, 10020, 10032, 10065, 10098, 10101, 10125, 10206, 10250, 16005, 19008, 20007, 20025, 20040, 20050
Offset: 1

Views

Author

Anuraag Pasula and Walter Robinson, Jul 23 2025

Keywords

Comments

Trivial cases are identified as (1) values of k where there are already no 0s besides leading 0s, like 255 or 1296, such that A004719(k)=k, or (2) where k mod 10 = 0 and k/10 is already in the sequence or is itself a trivial case, like 10080 or 2550. In case (1), k/A004719(k) is equivalent to k/k (as in 255/255). In case (2), k/A004719(k) = 10 * (k/10)/A004719(k/10) when we already know that (k/10)/A004719(k/10) is already an integer (as in 1080/18).
Any number k of the form 1|(at least one 0)|5, such as 105 or 10000000005, will be included in this sequence because k will always be divisible by 3 and 5 due to divisibility rules, and thus will be divisible by A004719(k)=15.
Numbers of form 1|(at least one 0)|8, such as 108 or 10000008, or 4|(at least one 0)|5, such as 405 or 400005, will be included in this sequence for similar reasons.

Examples

			A004719(108)=18, 108/18=6.
A004719(9009)=99, 9009/99=91.
A004719(2040)=24, 2040/24=85, 2040 is nontrivial because 204/24=17/2.
50 is trivial because 50/10 = 5, and 5 is trivial because A004719(5)=5.
		

Crossrefs

Subset of A090055.

Programs

  • Python
    def removeZeros(number):
        stringNum = str(number)
        stringNum = stringNum.replace("0", "")
        return int(stringNum)
    for x in range(1, 100000):
        smallInt = removeZeros(x)
        if smallInt == x:
            continue
        if x % smallInt == 0:
            if x % 10 == 0:
                if (x//10) % removeZeros(x//10) == 0:
                    continue
            print(x)

A052382 Numbers without 0 in the decimal expansion, colloquial 'zeroless numbers'.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111, 112, 113
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Comments

The entries 1 to 79 match the corresponding subsequence of A043095, but then 81, 91-98, 100, 102, etc. are only in one of the two sequences. - R. J. Mathar, Oct 13 2008
Complement of A011540; A168046(a(n)) = 1; A054054(a(n)) > 0; A007602, A038186, A038618, A052041, A052043, and A052045 are subsequences. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011, Dec 01 2009
a(n) = n written in base 9 where zeros are not allowed but nines are. The nine distinct digits used are 1, 2, 3, ..., 9 instead of 0, 1, 2, ..., 8. To obtain this sequence from the "canonical" base 9 sequence with zeros allowed, just replace any 0 with a 9 and then subtract one from the group of digits situated on the left. For example, 9^3 = 729 (10) (in base 10) = 1000 (9) (in base 9) = 889 (9-{0}) (in base 9 without zeros) because 100 (9) = [9-1]9 = 89 (9-{0}) and thus 1000 (9) = [89-1]9 = 889 (9-{0}). - Robin Garcia, Jan 15 2014
From Hieronymus Fischer, May 28 2014: (Start)
Inversion: Given a term m, the index n such that a(n) = m can be calculated by A052382_inverse(m) = m - sum_{1<=j<=k} floor(m/10^j)*9^(j-1), where k := floor(log_10(m)) [see Prog section for an implementation in Smalltalk].
Example 1: A052382_inverse(137) = 137 - (floor(137/10) + floor(137/100)*9) = 137 - (13*1 + 1*9) = 137 - 22 = 115.
Example 2: A052382_inverse(4321) = 4321 - (floor(4321/10) + floor(4321/100)*9 + floor(4321/1000)*81) = 4321 - (432*1 + 43*9 + 4*81) = 4321 - (432 + 387 + 324) = 3178. (End)
The sum of the reciprocals of these numbers from a(1)=1 to infinity, called the Kempner series, is convergent towards a limit: 23.103447... whose decimal expansion is in A082839. - Bernard Schott, Feb 23 2019
Integer n > 0 is encoded using bijective base-9 numeration, see Wikipedia link below. - Alois P. Heinz, Feb 16 2020

Examples

			For k >= 0, a(10^k) = (1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, ...) = A325203(k). - _Hieronymus Fischer_, May 30 2012 and Jun 06 2012; edited by _M. F. Hasler_, Jan 13 2020
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

Crossrefs

Cf. A004719, A052040, different from A067251.
Column k=9 of A214676.
Cf. A011540 (complement), A043489, A054054, A168046.
Cf. A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A248910 (base 6), A255805 (base 8), A255808 (base 9).
Cf. A082839 (sum of reciprocals).
Cf. A038618 (subset of primes)

Programs

  • Haskell
    a052382 n = a052382_list !! (n-1)
    a052382_list = iterate f 1 where
    f x = 1 + if r < 9 then x else 10 * f x' where (x', r) = divMod x 10
    -- Reinhard Zumkeller, Mar 08 2015, Apr 07 2011
    
  • Magma
    [ n: n in [1..114] | not 0 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local d, l, m; m:= n; l:= NULL;
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 11 2015
    is_zeroless := n -> not is(0 in convert(n, base, 10)):
    select(is_zeroless, [seq(1..113)]);  # Peter Luschny, Jun 20 2025
  • Mathematica
    A052382 = Select[Range[100], DigitCount[#, 10, 0] == 0 &] (* Alonso del Arte, Mar 10 2011 *)
  • PARI
    select( {is_A052382(n)=n&&vecmin(digits(n))}, [0..111]) \\ actually: is_A052382 = (bool) A054054. - M. F. Hasler, Jan 23 2013, edited Jan 13 2020
    
  • PARI
    a(n) = for (w=0, oo, if (n >= 9^w, n -= 9^w, return ((10^w-1)/9 + fromdigits(digits(n, 9))))) \\ Rémy Sigrist, Jul 26 2017
    
  • PARI
    apply( {A052382(n,L=logint(n,9))=fromdigits(digits(n-9^L>>3,9))+10^L\9}, [1..100])
    next_A052382(n, d=digits(n+=1))={for(i=1, #d, d[i]|| return(n-n%(d=10^(#d-i+1))+d\9)); n} \\ least a(k) > n. Used in A038618.
    ( {A052382_vec(n,M=1)=M--;vector(n, i, M=next_A052382(M))} )(99) \\ n terms >= M
    \\ See OEIS Wiki page (cf. LINKS) for more programs. - M. F. Hasler, Jan 11 2020
    
  • Python
    A052382 = [n for n in range(1,10**5) if not str(n).count('0')]
    # Chai Wah Wu, Aug 26 2014
    
  • Python
    from sympy import integer_log
    def A052382(n):
        m = integer_log(k:=(n<<3)+1,9)[0]
        return sum((1+(k-9**m)//(9**j<<3)%9)*10**j for j in range(m)) # Chai Wah Wu, Jun 27 2025
  • Smalltalk
    A052382
    "Answers the n-th term of A052382, where n is the receiver."
    ^self zerofree: 10
    A052382_inverse
    "Answers that index n which satisfy A052382(n) = m, where m is the receiver.”
    ^self zerofree_inverse: 10
    zerofree: base
    "Answers the n-th zerofree number in base base, where n is the receiver. Valid for base > 2.
    Usage: n zerofree: b [b = 10 for this sequence]
    Answer: a(n)"
    | n m s c bi ci d |
    n := self.
    c := base - 1.
    m := (base - 2) * n + 1 integerFloorLog: c.
    d := n - (((c raisedToInteger: m) - 1)//(base - 2)).
    bi := 1.
    ci := 1.
    s := 0.
    1 to: m
    do:
    [:i |
    s := (d // ci \\ c + 1) * bi + s.
    bi := base * bi.
    ci := c * ci].
    ^s
    zerofree_inverse: base
    "Answers the index n such that the n-th zerofree number in base base is = m, where m is the receiver. Valid for base > 2.
    Usage: m zerofree_inverse: b [b = 10 for this sequence]
    Answer: n"
    | m p q s |
    m := self.
    s := 0.
    p := base.
    q := 1.
    [p < m] whileTrue:
    [s := m // p * q + s.
    p := base * p.
    q := (base - 1) * q].
    ^m - s
    "by Hieronymus Fischer, May 28 2014"
    
  • sh
    seq 0 1000 | grep -v 0; # Joerg Arndt, May 29 2011
    

Formula

a(n+1) = f(a(n)) with f(x) = 1 + if x mod 10 < 9 then x else 10*f([x/10]). - Reinhard Zumkeller, Nov 15 2009
From Hieronymus Fischer, Apr 30, May 30, Jun 08 2012, Feb 17 2019: (Start)
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 9)*10^j, where m = floor(log_9(8*n + 1)), b(j) = floor((8*n + 1 - 9^m)/(8*9^j)).
Also: a(n) = Sum_{j=0..m-1} (1 + A010878(b(j)))*10^j.
a(9*n + k) = 10*a(n) + k, k=1..9.
Special values:
a(k*(9^n - 1)/8) = k*(10^n - 1)/9, k=1..9.
a((17*9^n - 9)/8) = 2*10^n - 1.
a((9^n - 1)/8 - 1) = 10^(n-1) - 1, n > 1.
Inequalities:
a(n) <= (1/9)*((8*n+1)^(1/log_10(9)) - 1), equality holds for n=(9^k-1)/8, k>0.
a(n) > (1/10)*((8*n+1)^(1/log_10(9)) - 1), n > 0.
Lower and upper limits:
lim inf a(n)/10^log_9(8*n) = 1/10, for n -> infinity.
lim inf a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/10, for n -> infinity.
lim sup a(n)/10^log_9(8*n) = 1/9, for n -> infinity.
lim sup a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/9, for n -> infinity.
G.f.: g(x) = (x^(1/8)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(9/8)*(1 - 10z(j)^9 + 9z(j)^10)/((1-z(j))(1-z(j)^9)), where z(j) = x^9^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 10(x^9^j)^9 + 9(x^9^j)^10)*x^9^j*f_j(x)/(1-x^9^j), where f_j(x) = 10^j*x^((9^j-1)/8)/(1-(x^9^j)^9). Here, the f_j obey the recurrence f_0(x) = 1/(1-x^9), f_(j+1)(x) = 10x*f_j(x^9).
Also: g(x) = (1/(1-x))*((Sum{k=0..8} h_(9,k)(x)) - 9*h_(9,9)(x)), where h_(9,k)(x) = Sum_{j>=0} 10^j*x^((9^(j+1)-1)/8)*x^(k*9^j)/(1-x^9^(j+1)).
Generic formulas for analogous sequences with numbers expressed in base p and only using the digits 1, 2, 3, ... d, where 1 < d < p:
a(n) = Sum_{j=0..m-1} (1 + b(j) mod d)*p^j, where m = floor(log_d((d-1)*n+1)), b(j) = floor(((d-1)*n+1-d^m)/((d-1)*d^j)).
Special values:
a(k*(d^n-1)/(d-1)) = k*(10^n-1)/9, k=1..d.
a(d*((2d-1)*d^(n-1)-1)/(d-1)) = ((d+9)*10^n-d)/9 = 10^n + d*(10^n-1)/9.
a((d^n-1)/(d-1)-1) = d*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_d((d-1)*n+1)-1)/9, equality holds for n = (d^k-1)/(d-1), k > 0.
a(n) > (d/10)*(10^log_d((d-1)*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_d((d-1)*n) = d/90, for n -> infinity.
lim sup a(n)/10^log_d((d-1)*n) = 1/9, for n -> infinity.
G.f.: g(x) = (1/(1-x)) Sum_{j>=0} (1 - (d+1)(x^d^j)^d + d(x^d^j)^(d+1))*x^d^j*f_j(x)/(1-x^d^j), where f_j(x) = p^j*x^((d^j-1)/(d-1))/(1-(x^d^j)^d). Here, the f_j obey the recursion f_0(x) = 1/(1-x^d), f_(j+1)(x) = px*f_j(x^d).
(End)
A052382 = { n | A054054(n) > 0 }. - M. F. Hasler, Jan 23 2013
From Hieronymus Fischer, Feb 20 2019: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.696899720...
Sum_{n>=1} 1/a(n)^2 = 1.6269683705819...
Sum_{n>=1} 1/a(n) = 23.1034479... = A082839. This so-called Kempner series converges very slowly. For the calculation of the sum, it is helpful to use the following fraction of partial sums, which converges rapidly:
lim_{n->infinity} (Sum_{k=p(n)..p(n+1)-1} 1/a(k)) / (Sum_{k=p(n-1)..p(n)-1} 1/a(k)) = 9/10, where p(n) = (9^n-1)/8, n > 1.
(End)

Extensions

Typos in formula section corrected by Hieronymus Fischer, May 30 2012
Name clarified by Peter Luschny, Jun 20 2025

A055641 Number of zero digits in n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2000

Keywords

Examples

			a(99) = 0 because the digits of 99 are 9 and 9, a(100) = 2 because the digits of 100 are 1, 0 and 0 and there are two 0's.
		

Crossrefs

Programs

  • Haskell
    a055641 n | n < 10    = 0 ^ n
              | otherwise = a055641 n' + 0 ^ d where (n',d) = divMod n 10
    -- Reinhard Zumkeller, Apr 30 2013
    
  • Mathematica
    Array[Last@ DigitCount@ # &, 105] (* Michael De Vlieger, Jul 02 2015 *)
  • PARI
    a(n)=if(n,n=digits(n); sum(i=2,#n,n[i]==0), 1) \\ Charles R Greathouse IV, Sep 13 2015
    
  • PARI
    A055641(n)=#select(d->!d,digits(n))+!n \\ M. F. Hasler, Jun 22 2018
    
  • Python
    def a(n): return str(n).count("0")
    print([a(n) for n in range(106)]) # Michael S. Branicky, May 26 2022

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = m + 1 - A055640(n) = Sum_{j=1..m+1} (1 + floor(n/10^j) - floor(n/10^j+0.9)), where m = floor(log_10(n)).
G.f.: g(x) = 1 + (1/(1-x))*Sum_{j>=0} (x^(10*10^j) - x^(11*10^j))/(1-x^10^(j+1)). (End)
a(n) = if n<10 then A000007(n) else a(A059995(n)) + A000007(A010879(n)). - Reinhard Zumkeller, Apr 30 2013, corrected by M. F. Hasler, Jun 22 2018

A051801 Product of the nonzero digits of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 2, 4, 6, 8, 10, 12, 14, 16, 18, 3, 3, 6, 9, 12, 15, 18, 21, 24, 27, 4, 4, 8, 12, 16, 20, 24, 28, 32, 36, 5, 5, 10, 15, 20, 25, 30, 35, 40, 45, 6, 6, 12, 18, 24, 30, 36, 42, 48, 54, 7, 7, 14, 21
Offset: 0

Views

Author

Dan Hoey, Dec 09 1999

Keywords

Examples

			a(0) = 1 since an empty product is 1 by convention. a(120) = 1*2 = 2.
		

Crossrefs

Basis for A051802.
See A338882 for similar sequences.
See also A007953 (digital sum).

Programs

  • Haskell
    a051801 0 = 1
    a051801 n = (a051801 n') * (m + 0 ^ m) where (n',m) = divMod n 10
    -- Reinhard Zumkeller, Nov 23 2011
    
  • Maple
    A051801 := proc(n) local d,j: d:=convert(n,base,10): return mul(`if`(d[j]=0,1,d[j]), j=1..nops(d)): end: seq(A051801(n),n=0..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    (Times@@Cases[IntegerDigits[#],Except[0]])&/@Range[0,80] (* Harvey P. Dale, Jun 20 2011 *)
    Table[Times@@(IntegerDigits[n]/.(0->1)),{n,0,80}] (* Harvey P. Dale, Apr 16 2023 *)
  • PARI
    a(n)=my(v=select(k->k>1,digits(n)));prod(i=1,#v,v[i]) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from operator import mul
    from functools import reduce
    def A051801(n):
        return reduce(mul, (int(d) for d in str(n) if d != '0')) if n > 0 else 1 # Chai Wah Wu, Aug 23 2014
    
  • Python
    from math import prod
    def a(n): return prod(int(d) for d in str(n) if d != '0')
    print([a(n) for n in range(74)]) # Michael S. Branicky, Jul 18 2021
    
  • Swift
    // Swift 5
    A051801(n): String(n).compactMap{$0.wholeNumberValue == 0 ? 1 : $0.wholeNumberValue}.reduce(1, *) // Egor Khmara, Jan 15 2021

Formula

a(n) = 1 if n=0, otherwise a(floor(n/10)) * (n mod 10 + 0^(n mod 10)). - Reinhard Zumkeller, Oct 13 2009
G.f. A(x) satisfies: A(x) = (1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + 9*x^9) * A(x^10). - Ilya Gutkovskiy, Nov 14 2020
a(n) = A007954(A004719(n)). - Michel Marcus, Mar 07 2022

A004185 Arrange digits of n in increasing order, then (for n > 0) omit the zeros.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 12, 22, 23, 24, 25, 26, 27, 28, 29, 3, 13, 23, 33, 34, 35, 36, 37, 38, 39, 4, 14, 24, 34, 44, 45, 46, 47, 48, 49, 5, 15, 25, 35, 45, 55, 56, 57, 58, 59, 6, 16, 26, 36, 46, 56, 66, 67, 68, 69, 7, 17, 27, 37, 47
Offset: 0

Views

Author

Keywords

Comments

Record values: A009994. - Reinhard Zumkeller, Dec 05 2009
If we define "sortable primes" as prime numbers that remain prime when their digits are sorted in increasing order, then all absolute primes (A003459) are sortable primes but not all sortable primes are absolute primes. For example, 311 is both sortable and absolute, and 271 is sortable but not absolute, since its digits can be permuted to 217 = 7 * 31 or 712 = 2^3 * 89, etc. - Alonso del Arte, Oct 05 2013
The above mentioned "sortable primes" are listed in A211654, the nontrivial ones (with digits not in nondecreasing order) in A086042. - M. F. Hasler, Jul 30 2019

Examples

			a(19) = 19 because the digits are already in increasing order.
a(20) = 2 because the digits of 20 are 2 and 0, which in increasing order are 0 and 2, but since zero-padding is not allowed on the left, the zero digit is dropped and we are left with 2.
a(21) = 12 because the digits of 21 are 2 and 1, which in increasing order are 1 and 2.
		

Crossrefs

Cf. A211654 (sortable primes) and subsequence A086042 (nontrivial solutions).

Programs

  • Haskell
    import Data.List (sort)
    a004185 n = read $ sort $ show n :: Integer
    -- Reinhard Zumkeller, Aug 10 2011
    
  • Magma
    A004185:=func; [n eq 0 select 0 else A004185(n): n in [0..57]]; // Bruno Berselli, Apr 03 2012
    
  • Maple
    A004185 := proc(n)
        local dgs;
        convert(n,base,10) ;
        dgs := sort(%,`>`) ;
        add( op(i,dgs)*10^(i-1),i=1..nops(dgs)) ;
    end proc:
    seq(A004185(n),n=0..20) ; # R. J. Mathar, Jul 26 2015
  • Mathematica
    FromDigits[Sort[DeleteCases[IntegerDigits[#], 0]]]&/@Range[0, 60] (* Harvey P. Dale, Nov 29 2011 *)
  • PARI
    a(n)=fromdigits(vecsort(digits(n))) \\ Charles R Greathouse IV, Feb 06 2017
  • Python
    def A004185(n):
        return int(''.join(sorted(str(n))).replace('0','')) if n > 0 else 0 # Chai Wah Wu, Nov 10 2015
    

A055640 Number of nonzero digits in decimal expansion of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2000

Keywords

Comments

Comment from Antti Karttunen, Sep 05 2004: (Start)
Also number of characters needed to write the number n in classical Greek alphabetic system, up to n=999. The Greek alphabetic system assigned values to the letters as follows:
alpha = 1, beta = 2, gamma = 3, delta = 4, epsilon = 5, digamma = 6, zeta = 7, eta = 8, theta = 9, iota = 10, kappa = 20, lambda = 30, mu = 40, nu = 50, xi = 60, omicron = 70, pi = 80, koppa = 90, rho = 100, sigma = 200, tau = 300, upsilon = 400, phi = 500, chi = 600, psi = 700, omega = 800, sampi = 900. (End)
For partial sums see A102685. - Hieronymus Fischer, Jun 06 2012

Examples

			129 is written as rho kappa theta in the old Greek system.
		

References

  • L. Threatte, The Greek Alphabet, in The World's Writing Systems, edited by Peter T. Daniels and William Bright, Oxford Univ. Press, 1996, p. 278.

Crossrefs

Differs from A098378 for the first time at position n=200 with a(200)=1, as only one nonzero Arabic digit (and only one Greek letter) is needed for two hundred, while A098378(200)=2 as two characters are needed in the Ethiopic system.

Programs

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j+0.9) - floor(n/10^j)), where m = floor(log_10(n)).
a(n) = m + 1 - A055641(n).
G.f.: (1/(1-x))*Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(n) = A055642(n) - A055641(n).

A004151 Omit trailing zeros from n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3, 31, 32, 33, 34, 35, 36, 37, 38, 39, 4, 41, 42, 43, 44, 45, 46, 47, 48, 49, 5, 51, 52, 53, 54, 55, 56, 57, 58, 59, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 7, 71, 72, 73, 74, 75, 76, 77, 78, 79, 8, 81, 82, 83, 84, 85, 86, 87, 88, 89, 9, 91, 92, 93, 94, 95, 96, 97, 98, 99, 1, 101, 102, 103, 104, 105, 106, 107, 108, 109, 11, 111, 112, 113, 114, 115, 116, 117, 118, 119, 12
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a004151 = until ((> 0) . (`mod` 10)) (`div` 10)
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Mathematica
    Flatten[Table[n/Take[Intersection[Divisors[n], 10^Range[0, Floor[Log[10, n]]]], -1], {n, 120}]] (* Alonso del Arte, Feb 02 2012 *)
    Table[n/10^IntegerExponent[n,10],{n,120}] (* Harvey P. Dale, May 02 2018 *)
  • PARI
    a(n)=n/10^valuation(n,10) \\ Charles R Greathouse IV, Oct 31 2012
    
  • Python
    def A004151(n):
        a, b = divmod(n,10)
        while not b:
            n = a
            a, b = divmod(n,10)
        return n # Chai Wah Wu, Feb 20 2024

Formula

a(n) = a(n/10) if n mod 10 = 0, otherwise n. - Reinhard Zumkeller, Feb 02 2012
G.f. A(x) satisfies: A(x) = A(x^10) + x/(1 - x)^2 - 10*x^10/(1 - x^10)^2. - Ilya Gutkovskiy, Oct 27 2019
Sum_{k=1..n} a(k) ~ (5/11) * n^2. - Amiram Eldar, Nov 20 2022

A242350 Multiply a(n-1) by 2 and drop all 0's.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 124, 248, 496, 992, 1984, 3968, 7936, 15872, 31744, 63488, 126976, 253952, 5794, 11588, 23176, 46352, 9274, 18548, 3796, 7592, 15184, 3368, 6736, 13472, 26944, 53888, 17776, 35552, 7114, 14228, 28456, 56912, 113824
Offset: 1

Views

Author

J. Lowell, May 11 2014

Keywords

Comments

Sequence enters a loop having period 36 at index 491: a(491) = a(527) = 366784, min and max being 28714 and 11772544. Starting with 3 instead of 1 gives another cycle. - Tom Edgar and Michel Marcus, May 13 2014
Zeroless analog of powers of 2. - N. J. A. Sloane, Jun 11 2014

Examples

			Term after 512 is 124 because 512*2=1024, and 1024 becomes 124 if all 0's are taken out.
		

Crossrefs

Programs

  • Mathematica
    NestList[FromDigits[Select[IntegerDigits[2 #],#!=0&]]&,1,50] (* Harvey P. Dale, Oct 22 2018 *)
  • PARI
    dropz(n)=d = digits(n); s = 0; for (i=1, #d, if (d[i], s = 10*s + d[i]);); s;
    lista(nn) = a = 1; for (i=1, nn, print1(a, ", "); a = dropz(2*a);) \\ Michel Marcus, May 12 2014

Extensions

More terms from Michel Marcus, May 12 2014

A004720 Delete all digits '1' from the sequence of nonnegative integers.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 3, 4, 5, 6, 7, 8, 9, 20, 2, 22, 23, 24, 25, 26, 27, 28, 29, 30, 3, 32, 33, 34, 35, 36, 37, 38, 39, 40, 4, 42, 43, 44, 45, 46, 47, 48, 49, 50, 5, 52, 53, 54, 55, 56, 57, 58, 59, 60, 6, 62, 63, 64, 65, 66, 67, 68, 69, 70, 7, 72, 73, 74, 75
Offset: 1

Views

Author

Keywords

Comments

Similar to A004176. - R. J. Mathar, Oct 28 2008
More precisely, in A004176 the term becomes 0 if no digit remains, e.g., for 1 or 11, whereas here in such a case the integer is completely skipped (as in A004719, A004721, ... which are the analogs for deleting 0, 2, ...). - M. F. Hasler, Feb 01 2016

Examples

			The first nonnegative integer, 0, remains as a(1).
The second nonnegative integer, 1, completely disappears upon removal of the digit 1.
The third nonnegative integer, 2, remains as a(2).
The number 10 becomes a(10)=0.
The number 11 completely disappears upon removal of both its digits '1'.
The number 12 becomes a(11)=2.
		

Crossrefs

See A004176 for another version.
Cf. A004719, A004721, ...

Programs

  • Maple
    f:= proc(n) local L,i;
         L:= subs(1=NULL, convert(n,base,10));
         if L = [] then NULL
         else add(L[i]*10^(i-1),i=1..nops(L))
         fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Feb 07 2016
  • Mathematica
    f[n_] := Block[{a = DeleteCases[ IntegerDigits[n], 1]}, If[a != {}, FromDigits@ a, b]]; DeleteCases[ Array[f, 75, 0], b] (* Robert G. Wilson v, Feb 05 2016 *)
  • PARI
    for(n=0,99,if(t=select(d->d!="1",Vec(Str(n))),print1(concat(t)","))) \\ M. F. Hasler, Feb 01 2016
    
  • Python
    def A004720(n):
        l = len(str(n-1))
        m = (10**l-1)//9
        k = n + l - 2 + int(n+l-1 >= m)
        return 0 if k == m else int(str(k).replace('1','')) # Chai Wah Wu, Apr 20 2021

Extensions

Corrected by T. D. Noe, Sep 19 2008
Entry revised by N. J. A. Sloane and M. F. Hasler following a suggestion from Sean A. Irvine, Feb 01 2016

A004721 Delete all 2's from the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 13, 14, 15, 16, 17, 18, 19, 0, 1, 3, 4, 5, 6, 7, 8, 9, 30, 31, 3, 33, 34, 35, 36, 37, 38, 39, 40, 41, 4, 43, 44, 45, 46, 47, 48, 49, 50, 51, 5, 53, 54, 55, 56, 57, 58, 59, 60, 61, 6, 63, 64, 65, 66, 67, 68, 69, 70, 71, 7, 73, 74, 75
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; t={0}; Do[If[Union[d[n]]!={2},n=FromDigits[DeleteCases[d[n],2]]; AppendTo[t,n]],{n,75}]; t (* Jayanta Basu, May 17 2013 *)
  • Python
    def A004721(n):
        l = len(str(n))
        m = 2*(10**l-1)//9
        k = n + l - int(n+l < m)
        return 1 if k == m else int(str(k).replace('2','')) # Chai Wah Wu, Apr 20 2021
Previous Showing 11-20 of 54 results. Next