cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A228181 Numbers k such that sum of square of prime divisors of k equals sum of prime divisors of k+1.

Original entry on oeis.org

12, 27, 385, 1120, 4840, 9936, 14500, 29440, 95795, 105875, 178904, 223155, 341248, 343343, 754985, 830908, 1059630, 1841049, 2408832, 2949375, 3564704, 4934358, 5368792, 5500312, 6695000, 6805372, 8332831, 8846656, 10126336, 12956040, 13157235, 17254600
Offset: 1

Views

Author

Michel Lagneau, Aug 15 2013

Keywords

Comments

Numbers k such that A005063(k) = A008472(k+1).

Examples

			The prime divisors of 9936 are {2, 3, 23} and the prime divisors of 9937 are {19, 523} => 2^2 + 3^2 + 23^2 = 19 + 523 = 542, hence 9936 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..2500000]| &+PrimeDivisors(k+1) eq &+[PrimeDivisors(k)[i]^2: i in [1..#PrimeDivisors(k)]]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    fQ[n_] := Plus @@ (First@# & /@ FactorInteger[n]^2) == Plus @@ (First@# & /@ FactorInteger[n + 1]); Select[ Range@ 100000, fQ]

A322080 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{p|n, p prime} p^k.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 4, 3, 1, 0, 8, 9, 2, 1, 0, 16, 27, 4, 5, 2, 0, 32, 81, 8, 25, 5, 1, 0, 64, 243, 16, 125, 13, 7, 1, 0, 128, 729, 32, 625, 35, 49, 2, 1, 0, 256, 2187, 64, 3125, 97, 343, 4, 3, 2, 0, 512, 6561, 128, 15625, 275, 2401, 8, 9, 7, 1, 0, 1024, 19683, 256, 78125, 793, 16807, 16, 27, 29, 11, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  0,  0,   0,    0,    0,     0,  ...
  1,  2,   4,    8,   16,    32,  ...
  1,  3,   9,   27,   81,   243,  ...
  1,  2,   4,    8,   16,    32,  ...
  1,  5,  25,  125,  625,  3125,  ...
  2,  5,  13,   35,   97,   275,  ...
		

Crossrefs

Columns k=0..4 give A001221, A008472, A005063, A005064, A005065.
Cf. A109974, A200768 (diagonal), A285425, A286880, A321258.

Programs

  • Mathematica
    Table[Function[k, Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[Prime[j]^k x^Prime[j]/(1 - x^Prime[j]), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={vecsum([p^k | p<-factor(n)[,1]])}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} prime(j)^k*x^prime(j)/(1 - x^prime(j)).

A332385 Sum of squares of indices of distinct prime factors of n.

Original entry on oeis.org

0, 1, 4, 1, 9, 5, 16, 1, 4, 10, 25, 5, 36, 17, 13, 1, 49, 5, 64, 10, 20, 26, 81, 5, 9, 37, 4, 17, 100, 14, 121, 1, 29, 50, 25, 5, 144, 65, 40, 10, 169, 21, 196, 26, 13, 82, 225, 5, 16, 10, 53, 37, 256, 5, 34, 17, 68, 101, 289, 14, 324, 122, 20, 1, 45, 30, 361, 50, 85, 26, 400, 5, 441, 145, 13
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 10 2020

Keywords

Examples

			a(21) = a(3 * 7) = a(prime(2) * prime(4)) = 2^2 + 4^2 = 20.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(numtheory[pi](i[1])^2, i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    nmax = 75; CoefficientList[Series[Sum[k^2 x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := Plus @@ (PrimePi[#[[1]]]^2 & /@ FactorInteger[n]); Table[a[n], {n, 1, 75}]

Formula

G.f.: Sum_{k>=1} k^2 * x^prime(k) / (1 - x^prime(k)).
If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^2), where pi = A000720.

A347156 Sum of squares of distinct prime divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 4, 0, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 38, 0, 4, 9, 4, 25, 13, 0, 4, 9, 29, 0, 13, 0, 4, 34, 4, 0, 13, 0, 29, 9, 4, 0, 13, 25, 53, 9, 4, 0, 38, 0, 4, 58, 4, 25, 13, 0, 4, 9, 78, 0, 13, 0, 4, 34, 4, 49, 13, 0, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^2 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[Prime[k]^2 x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^2 * x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).

A138296 Table T(k,n) read along antidiagonals: sum of the k-th powers of the distinct prime factors of A024619(n).

Original entry on oeis.org

5, 13, 7, 35, 29, 5, 97, 133, 13, 9, 275, 641, 35, 53, 8, 793, 3157, 97, 351, 34, 5, 2315, 15689, 275, 2417, 152, 13, 7, 6817, 78253, 793, 16839, 706, 35, 29, 10, 20195, 390881, 2315, 117713, 3368, 97, 133, 58, 13, 60073, 1953637, 6817, 823671, 16354, 275, 641
Offset: 1

Views

Author

R. J. Mathar, May 07 2008

Keywords

Comments

Row k=1 is A109353. Rows k=2,3 and 4 are subsequences of A005063-A005065.

Examples

			Upper left corner of the table starting at row k=1, column n=1:
1|......5.......7.......5.......9.......8.......5.......7.
2|.....13......29......13......53......34......13......29.
3|.....35.....133......35.....351.....152......35.....133.
4|.....97.....641......97....2417.....706......97.....641.
5|....275....3157.....275...16839....3368.....275....3157.
6|....793...15689.....793..117713...16354.....793...15689.
7|...2315...78253....2315..823671...80312....2315...78253.
8|...6817..390881....6817.5765057..397186....6817..390881.
		

Programs

  • Maple
    A024619 := proc(n)
        local a;
        if n = 1 then
            RETURN(6);
        else
            for a from A024619(n-1)+1 do
                if A001221(a) > 1 then
                   RETURN(a) ;
                fi ;
            od:
        fi ;
    end:
    A138296 := proc(n,j)
        local f,beta ;
        beta := 0 ;
        for f in ifactors( A024619(n) )[2] do
            beta := beta+op(1,f)^j ;
        od:
        RETURN(beta) ;
    end:
    for d from 1 to 10 do for n from 1 to d do printf("%d,",A138296(n,d-n+1)) ; od: od: # R. J. Mathar, May 07 2008

Formula

T(k,n) = sum_{d in A000040, d| A024619(n)} d^k.

A199583 a(n) is the smallest number such that the sum of the n-th powers of its distinct prime divisors is divisible by n.

Original entry on oeis.org

2, 2, 3, 2, 5, 70, 7, 2, 3, 33, 11, 1155, 13, 78, 26, 2, 17, 2156564410, 19, 6006, 26, 114, 23, 2156564410, 5, 33, 3, 1365, 29, 110, 31, 2, 62, 15, 201, 2156564410, 37, 30, 14, 961380175077106319535, 41, 1385670, 43, 2805, 26, 266, 47, 961380175077106319535
Offset: 1

Views

Author

Michel Lagneau, Nov 08 2011

Keywords

Comments

a(n) > 1 and a(n) = n if n prime. All terms are squarefree.

Examples

			a(6) = 70 = 2*5*7; 2^6 + 5^6 + 7^6 = 133338 = 22223*6.
a(18)= 2*5*7*11*13*17*19*23*29 = 2156564410 because:
p^18 == 10, 9 (mod 18) for p = 2,3 respectively, and p^18 == 1 (mod 18) for p prime > 3. The minimum sum divisible by 18 is s = 2^18 + Sum_{k=3..10} prime(k)^18 whose residues sum to 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 18. Hence a(18) = 2156564410.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=array(1..50):for n from 1 to 50 do:q:=0:for k from 2 to 7000 while(q=0)do:x:=factorset(k):s:=sum(x[j]^n ,j=1..nops(x)) :if irem(s,n)=0 then printf ( "%d %d \n",n,k):q:=1:else fi:od:if q=0 then for i from 1 to n do: T[i]:=irem(ithprime(i)^n,n):od:W:=convert(T,set):n1:=nops(W):n2:=W[n1]:n3:=W[n1-1]:
    s:=0:p:=1:for a from 1 to n  while(s<>n) do: if T[a]= 1 or T[a]=n2 or (T[a] = n3 and n2+n3
    				

A252424 Numbers k such that sum of odd divisors of k equals sum of squares of primes dividing k.

Original entry on oeis.org

18, 36, 72, 144, 234, 288, 468, 576, 936, 1152, 1872, 2304, 3744, 4608, 7488, 9216, 14976, 18432, 29952, 36864, 59904, 73728, 119808, 147456, 239616, 294912, 479232, 589824, 958464, 1179648, 1916928, 2359296, 3833856, 4718592, 7667712, 9437184, 15335424, 18874368
Offset: 1

Views

Author

Michel Lagneau, Dec 17 2014

Keywords

Comments

Numbers k such that A000593(k) = A005063(k).
a(n) == 0 (mod 18), and the numbers 18*2^m, m = 0,1,... are in the sequence because the odd divisors are {1, 3, 9}, the prime factors are {2, 3} => 2^2 + 3^2 = 1 + 3 + 9 = 13.
The numbers of the form 18*13*2^m are in the sequence because the odd divisors are {1, 3, 9, 13, 39, 117}, the prime factors are {2, 3, 13} => 2^2 + 3^2 + 13^2 = 1 + 3 + 9 + 13 + 39 + 117 = 182.

Examples

			18 is in the sequence because the prime factors of 18 are {2, 3}, the odd divisors of 18 are {1, 3, 9} => 2^2 + 3^2 = 1 + 3 + 9 = 13.
Or 18 => A000593(18) = A005063(18) = 13.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^5:
    for n from 2 to nn do:
       x:=factorset(n):n0:=nops(x):
       s0:=sum('x[i]^2','i'=1..n0):
       y:=divisors(n):n1:=nops(y):
       s :=0 :
            for j from 1 to n1 do :
           if irem (y[j],2)=1 then s:=s+y[j]:
          else
          fi:
        od:
         if s=s0
        then
       printf(`%d, `,n):
       else
       fi:
    od:
  • Mathematica
    a252424[n_Integer] := Module[{f, g},
      f[x_] := Plus @@ Select[Divisors[x], OddQ[#] &];
      g[x_] := Plus @@ (First@Transpose@FactorInteger[x]^2);
    Rest@Select[Range[n], f[#] == g[#] &]]; a252424[10^6] (* Michael De Vlieger, Dec 17 2014 *)
    Select[Range[19*10^6],Total[Select[Divisors[#],OddQ]]==Total[ FactorInteger[ #][[All,1]]^2]&] (* Harvey P. Dale, May 11 2020 *)
    f[p_, e_] := If[p == 2, 1, (p^(e + 1) - 1)/(p - 1)]; q[n_] := Times @@ f @@@ (fct = FactorInteger[n]) == Total[fct[[;; , 1]]^2]; Select[Range[2, 10^6], q] (* Amiram Eldar, Jul 09 2022 *)
  • PARI
    isok(n) = my(f = factor(n)); sum(i=1, #f~, f[i,1]^2) == sumdiv(n, d, d*(d%2)); \\ Michel Marcus, Dec 17 2014

A291108 Expansion of Sum_{k>=2} k^2*x^(2*k)/(1 - x^k).

Original entry on oeis.org

0, 0, 0, 4, 0, 13, 0, 20, 9, 29, 0, 65, 0, 53, 34, 84, 0, 130, 0, 145, 58, 125, 0, 273, 25, 173, 90, 265, 0, 399, 0, 340, 130, 293, 74, 614, 0, 365, 178, 609, 0, 735, 0, 625, 340, 533, 0, 1105, 49, 754, 298, 865, 0, 1183, 146, 1113, 370, 845, 0, 1859, 0, 965, 580, 1364, 194, 1743, 0, 1465, 538, 1599, 0, 2550, 0, 1373, 884
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 17 2017

Keywords

Comments

Sum of squares of divisors of n except 1 and n^2 (sum of squares of nontrivial divisors of n).

Examples

			a(6) = 13 because 6 has 4 divisors {1, 2, 3, 6} among which 2 are nontrivial {2, 3} and 2^2 + 3^2 = 13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; Rest[CoefficientList[Series[Sum[k^2 x^(2 k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]]
    Join[{0}, Table[DivisorSigma[2, n] - n^2 - 1, {n, 2, 75}]]
  • PARI
    A291108(n) = sumdiv(n,d,if((1==d)||(n==d),0,d^2)); \\ Antti Karttunen, Jan 22 2025

Formula

G.f.: Sum_{k>=2} k^2*x^(2*k)/(1 - x^k).
a(n) = A001157(n) - A000290(n) - 1 for n > 1.
a(n) = A067558(n) - 1 for n > 1.
a(n) = A005063(n) if n is a semiprime (A001358).
a(n) = 0 if n is a prime or 1 (A008578).
a(n) = n if n is a square of prime (A001248).
a(p^k) = (p^(2*k) - p^2)/(p^2 - 1) for p is a prime and k > 0.

A380444 Sum of the nonprimes dividing n and the squares of the primes dividing n.

Original entry on oeis.org

1, 5, 10, 9, 26, 20, 50, 17, 19, 40, 122, 36, 170, 68, 50, 33, 290, 47, 362, 64, 80, 148, 530, 68, 51, 200, 46, 100, 842, 100, 962, 65, 164, 328, 110, 99, 1370, 404, 218, 112, 1682, 146, 1850, 196, 104, 580, 2210, 132, 99, 115, 350, 256, 2810, 128, 202, 164, 428, 904, 3482, 196, 3722, 1028, 152, 129, 260, 262, 4490, 400, 608, 208, 5042, 203, 5330, 1448, 150, 484
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 21 2025

Keywords

Comments

Inverse Möbius transform of A103164(n).

Examples

			a(12) = 1 + 2^2 + 3^2 + 4 + 6 + 12 = 36.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A005063, A008472 (sopf), A010051, A023890, A103164.

Programs

  • Mathematica
    Table[DivisorSigma[1, n] + Sum[p (p - 1), {p, Select[Divisors[n], PrimeQ]}], {n, 100}]

Formula

a(n) = sigma(n) - sopf(n) + sopf_2(n), where sopf_2(n) = Sum_{p|n, p prime} p^2.
a(n) = Sum_{d|n} d^tau(d^c(d)), where c = A010051.
a(n) = A023890(n) + A005063(n).
a(p^k) = (p^(k+1)+p^3-2*p^2+p-1)/(p-1) for p prime, k >= 1. - Wesley Ivan Hurt, Jul 02 2025

A118585 Sum of squares of digits of prime factors of n, with multiplicity.

Original entry on oeis.org

0, 4, 9, 8, 25, 13, 49, 12, 18, 29, 2, 17, 10, 53, 34, 16, 50, 22, 82, 33, 58, 6, 13, 21, 50, 14, 27, 57, 85, 38, 10, 20, 11, 54, 74, 26, 58, 86, 19, 37, 17, 62, 25, 10, 43, 17, 65, 25, 98, 54, 59, 18, 34, 31, 27, 61, 91, 89, 106, 42
Offset: 1

Views

Author

Jonathan Vos Post, May 07 2006

Keywords

Comments

Differs from A067666 if any prime factor exceeds 1 digit. Fixed points include 16, 27. See also: A067666 Sum of squares of prime factors of n (counted with multiplicity). See also: A003132 Sum of squares of digits of n. See also: A118503 Sum of digits of prime factors of n, with multiplicity.

Examples

			a(22) = 6 because 22 = 2 * 11 and the sum of squares of digits of prime factors is 2^2 + 1^2 + 1^2.
a(121) = 4 because 121 = 11^2 = 11 * 11, so 1^2 + 1^2 + 1^2 + 1^2 = 4.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[Total[Flatten[IntegerDigits/@(Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]])]^2],{n,2,60}]] (* Harvey P. Dale, Nov 17 2022 *)

Formula

a(n) = SUM[i=1..k] (e_i)*A003132(p_i) where prime decomposition of n = (p_1)^(e_1) * (p_2)^(e_2) * ... * (p_k)^(e_k).

Extensions

a(0) removed by Andrey Zabolotskiy, Jun 08 2024
Previous Showing 21-30 of 35 results. Next