cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A124279 Riordan array (1/(1-x),x(1-x+x^2)/(1-x)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 8, 7, 5, 1, 1, 1, 6, 12, 13, 9, 6, 1, 1, 1, 7, 17, 22, 19, 11, 7, 1, 1, 1, 8, 23, 35, 35, 26, 13, 8, 1, 1, 1, 9, 30, 53
Offset: 0

Views

Author

Paul Barry, Oct 24 2006

Keywords

Comments

Row sums are A005314. Diagonal sums are A124280. T(2n,n) is A002426.
Reversal of A124445. - Paul Barry, Nov 01 2006

Examples

			Triangle begins
1,
1, 1,
1, 1, 1,
1, 2, 1, 1,
1, 3, 3, 1, 1,
1, 4, 5, 4, 1, 1,
1, 5, 8, 7, 5, 1, 1
		

Formula

Number triangle T(n,k)=sum{j=0..n-k, C(j,n-k-j)C(k,n-k-j)}

A124445 Expansion of 1/(1-x-x*y+x^2*y-x^3*y^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 7, 8, 5, 1, 1, 1, 6, 9, 13, 12, 6, 1, 1, 1, 7, 11, 19, 22, 17, 7, 1, 1, 1, 8, 13, 26, 35, 35, 23, 8, 1, 1, 1, 9, 15, 34, 51, 61, 53, 30, 9, 1
Offset: 0

Views

Author

Paul Barry, Nov 01 2006

Keywords

Comments

Row sums are A107293(n+4). Diagonal sums are A005314(n+1).
Reversal of A124279. T(2n,n) is A002426. - Paul Barry, Nov 01 2006

Examples

			Triangle begins:
1,
1, 1,
1, 1, 1,
1, 1, 2, 1,
1, 1, 3, 3, 1,
1, 1, 4, 5, 4, 1,
1, 1, 5, 7, 8, 5, 1,
1, 1, 6, 9, 13, 12, 6, 1,
1, 1, 7, 11, 19, 22, 17, 7, 1
		

Crossrefs

Cf. A180562.

Formula

Number triangle T(n,k)=sum{j=0..n, C(j,k-j)*C(n-k,k-j)}*[k<=n];
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-3,k-2), T(0,0) = T(1,0) = T(1,1) = T(2,0) = T(2,1) = T(2,2) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2014

A172020 Number of subsets S of {1,2,3,...,n} with the property that if x is a member of S then at least one of x-2 and x+2 is also a member of S.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 28, 49, 84, 144, 252, 441, 777, 1369, 2405, 4225, 7410, 12996, 22800, 40000, 70200, 123201, 216216, 379456, 665896, 1168561, 2050657, 3598609, 6315113, 11082241, 19448018, 34128964, 59892184, 105103504, 184443732, 323676081, 568011852
Offset: 1

Views

Author

John W. Layman, Jan 22 2010

Keywords

Comments

It is interesting that, for k > 0, it appears that a(2k) is the square of A005251(k+2). (This has since been proved by Andrew Weimholt; see link.)
If we denote by d2 the second difference of {a(n)}, it appears that d2(2k) is the square of A005314(k).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 0, -1, -1, 3, -1, 0, 1, -1}, {1, 1, 2, 4, 8, 16, 28, 49, 84}, 32] (* Jean-François Alcover, Feb 15 2016 *)
  • PARI
    Vec(x*(1-x+x^3+2*x^4-x^8)/((1-2*x+x^2-x^3)*(1+x-x^3)*(1-x+x^3)) + O(x^50)) \\ Colin Barker, Feb 15 2016

Formula

Andrew Weimholt has shown that a(2*n) = A005251(n+2) ^ 2, and a(2*n+1) = A005251(n+2) * A005251(n+3). (See the link.)
G.f.: x*(1 - x + x^3 + 2*x^4 - x^8) / ((1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x + x^3)). - Colin Barker, Feb 15 2016

A227300 Rising diagonal sums of triangle of Fibonacci polynomials (rows displayed as centered text).

Original entry on oeis.org

1, 2, 2, 3, 7, 11, 16, 28, 48, 77, 126, 211, 349, 573, 947, 1568, 2588, 4271, 7058, 11661, 19256, 31804, 52538, 86779, 143329, 236744, 391046, 645900, 1066850, 1762163, 2910634, 4807590, 7940870, 13116238, 21664568, 35784145, 59105987, 97627533, 161254953, 266350689
Offset: 1

Views

Author

John Molokach, Jul 09 2013

Keywords

Comments

Rising diagonal sums of triangle A011973, taken with rows as centered text.

Examples

			a(1)  = 1;
a(2)  = 1 +  1;
a(3)  = 1 +  1;
a(4)  = 1 +  1 +  1;
a(5)  = 1 +  1 +  3 +  2;
a(6)  = 1 +  1 +  5 +  4;
a(7)  = 1 +  1 +  7 +  6 +  1;
a(8)  = 1 +  1 +  9 +  8 +  6 +  3;
a(9)  = 1 +  1 + 11 + 10 + 15 + 10;
a(10) = 1 +  1 + 13 + 12 + 28 + 21 +  1.
		

Crossrefs

Cf. A011973 (triangle), A000045 (row sums of triangle), A005314 (falling diagonal sums of triangle). Expansion of terms begin with A055624 at a(1) and adds A016813 at a(4), A016754 at a(7), and A100157 at a(10).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 2, 0, 0, -1}, {1, 2, 2, 3, 7, 11}, 40] (* T. D. Noe, Jul 11 2013 *)
  • PARI
    a(n) = if(n<=1, 1, sum(k=0, floor((n-1)/3), binomial(2*n-2-5*k,k)+binomial(2*n-1-5*k,k)) ); \\ Joerg Arndt, Jul 11 2013

Formula

a(n) = Sum_{k=0..floor((n-1)/3)} (binomial(2*n-2-5*k,k) + binomial(2*n-3-5*k,k)) for n >= 2; a(1)=1. - John Molokach, Jul 11 2013
a(n) = a(n-1) + 2*a(n-3) - a(n-6), starting with {1, 2, 2, 3, 7, 11}. - T. D. Noe, Jul 11 2013
G.f.: x*(1+x-x^3)/(1-x-2*x^3+x^6) - John Molokach, Jul 15 2013
a(n) = Sum_{k=0..floor((2n-1)/3)} binomial(2n-k-2-3*floor(k/2),floor(k/2)). - John Molokach, Jul 29 2013

A020713 Pisot sequences E(5,9), P(5,9).

Original entry on oeis.org

5, 9, 16, 28, 49, 86, 151, 265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396, 128801, 226030, 396655, 696081, 1221537, 2143648, 3761840, 6601569, 11584946, 20330163, 35676949, 62608681, 109870576, 192809420, 338356945, 593775046, 1042002567
Offset: 0

Views

Author

Keywords

Crossrefs

This is a subsequence of A005314.
See A008776 for definitions of Pisot sequences.
Cf. A099529.

Programs

  • Magma
    Iv:=[5, 9]; [n le 2 select Iv[n] else Ceiling(Self(n-1)^2/Self(n-2)-1/2): n in [1..40]]; // Bruno Berselli, Feb 04 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 5, a[1] == 9, a[n] == Ceiling[a[n - 1]^2/a[n - 2]-1/2]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)
    LinearRecurrence[{2,-1,1},{5,9,16},40] (* Harvey P. Dale, Aug 03 2021 *)
  • PARI
    lista(nn) = {print1(x = 5, ", ", y = 9, ", "); for (n=1, nn, z = ceil(y^2/x -1/2); print1(z, ", "); x = y; y = z;);} \\ Michel Marcus, Feb 04 2016

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (5-x+3*x^2) / (1-2*x+x^2-x^3). - Colin Barker, Jun 05 2016
Theorem: E(5,9) satisfies a(n) = 2 a(n - 1) - a(n - 2) + a(n - 3) for n>=3. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016
a(n) = (-1)^n * A099529(n+6). - Jinyuan Wang, Mar 10 2020

A232582 Number of (n+1) X (1+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

0, 2, 4, 6, 10, 18, 32, 56, 98, 172, 302, 530, 930, 1632, 2864, 5026, 8820, 15478, 27162, 47666, 83648, 146792, 257602, 452060, 793310, 1392162, 2443074, 4287296, 7523680, 13203138, 23169892, 40660326, 71353898, 125217362, 219741152, 385618840
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2013

Keywords

Comments

Column 1 of A232589.

Examples

			Some solutions for n=7:
  2 1   0 1   2 1   0 1   0 1   0 1   0 1   2 1   0 1   2 1
  0 1   2 1   0 1   2 0   2 1   2 0   2 1   0 2   2 0   0 1
  2 0   0 1   2 0   1 2   0 2   1 2   0 1   1 0   1 2   2 0
  1 2   2 1   1 2   1 0   1 0   0 1   2 0   1 2   0 1   1 2
  1 0   0 1   0 1   2 1   2 1   2 0   1 2   1 0   2 1   1 0
  1 2   2 0   2 1   0 2   0 1   1 2   0 1   1 2   0 2   2 1
  1 0   1 2   0 2   1 0   2 0   1 0   2 0   1 0   1 0   0 2
  1 2   1 0   1 0   1 2   1 2   1 2   1 2   1 2   1 2   1 0
		

Formula

Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) = 2*A005314(n-1).
Empirical: G.f.: -2*x^2 / ( -1+2*x-x^2+x^3 ). - R. J. Mathar, Nov 23 2014
Theorem: a(n) = Sum_{j=1..floor((n-2)/3)} 2* Hypergeometric2F1([2+3*j-n,-(2j+1)], [1], 1). - Richard Turk, Oct 22 2019

A307677 a(0) = a(1) = a(2) = a(3) = 1; thereafter a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 9, 15, 27, 47, 83, 145, 255, 447, 785, 1377, 2417, 4241, 7443, 13061, 22921, 40223, 70587, 123871, 217379, 381473, 669439, 1174783, 2061601, 3617857, 6348897, 11141537, 19552035, 34311429, 60212361, 105665327, 185429723, 325406479, 571048563, 1002120369
Offset: 0

Views

Author

Joseph Damico, Apr 21 2019

Keywords

Comments

A079398, A103609, A003269, A306276, A126116, and A000288 are the other six sequences which have characteristic equations of the form x^4 = ax^3 + bx^2 + cx + 1 in which a, b, and c are equal to either 0 or 1 -- but not all three of them are equal to zero. (Each of those sequences begins with 1,1,1,1.)
A005251 has the same characteristic equation, and each successive term is determined by the same operation, namely, a(n) = a(n-1) + a(n-2) + a(n-4). However, it has different starting values: (0,1,1,1) instead of (1,1,1,1).
The characteristic equation of this sequence is x^4 = x^3 + x^2 + 1. Lim_{n->infinity} a(n+1)/a(n) = 1.754877666...

Crossrefs

Programs

  • Magma
    [n le 4 select 1 else Self(n-1) +Self(n-2) +Self(n-4): n in [1..51]]; // G. C. Greubel, Oct 23 2024
    
  • Mathematica
    LinearRecurrence[{1,1,0,1}, {1,1,1,1}, 51] (* G. C. Greubel, Oct 23 2024 *)
  • PARI
    Vec((1 - x^2 - x^3) / ((1 + x)*(1 - 2*x + x^2 - x^3)) + O(x^40)) \\ Colin Barker, Apr 25 2020
    
  • SageMath
    @CachedFunction # a = A307677
    def a(n): return 1 if n<4 else a(n-1) +a(n-2) +a(n-3)
    [a(n) for n in range(51)] # G. C. Greubel, Oct 23 2024

Formula

From Colin Barker, Apr 25 2020: (Start)
G.f.: (1 - x^2 - x^3) / ((1 + x)*(1 - 2*x + x^2 - x^3)).
a(n) = a(n-1) + a(n-2) + a(n-4) for n>3. (End)
a(n) = (1/5)*((-1)^n + 2*(2*A005314(n+1) - A005314(n) - 2*A005314(n-1))). - G. C. Greubel, Oct 23 2024

A347493 a(0) = 1, a(1) = 0, a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 8, 13, 24, 41, 73, 127, 224, 392, 689, 1208, 2121, 3721, 6531, 11460, 20112, 35293, 61936, 108689, 190737, 334719, 587392, 1030800, 1808929, 3174448, 5570769, 9776017, 17155715, 30106180, 52832664, 92714861, 162703240, 285524281, 501060185, 879299327, 1543062752
Offset: 0

Views

Author

Greg Dresden and Yichen P. Wang, Sep 03 2021

Keywords

Comments

a(n) is also the number of ways to tile a strip of length n with squares, dominoes, and tetrominoes such that the first tile is NOT a square. As such, it completes the set of such tilings with A005251 (first tile is NOT a domino), A005314 (first tile is NOT a tetromino), and A060945 (no restrictions on first tile).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - x - x^2 - x^4), {x, 0, 40}], x] (* Michael De Vlieger, Mar 04 2022 *)
    LinearRecurrence[{1,1,0,1},{1,0,1,1},60] (* Harvey P. Dale, Aug 17 2023 *)

Formula

a(n) = 2*A060945(n) - A005251(n) - A005314(n).
G.f.: (1 - x)/(1 - x - x^2 - x^4).
Sum_{k=0..n} a(k)*F(n-k) = a(n+3) - F(n+2) for F(n)=A000045(n) the Fibonacci numbers.
5*a(n) = 2*(-1)^n + 3*A005314(n+1) -4*A005314(n) +2*A005314(n-1). - R. J. Mathar, Sep 30 2021

A121230 First Hadamard-Sylvester matrix self -similar matrix based on the Padovan/ Minimal Pisot 3 X 3 matrix as an 9 X 9 matrix: Characteristic Polynomial:1 - x - x^3 - x^4 - x^5 + 3 x^6 + 2 x^7 - x^9.

Original entry on oeis.org

0, 13, 5, 22, 42, 54, 126, 192, 347, 631, 1056, 1914, 3320, 5814, 10276, 17921, 31549, 55338, 97026, 170454, 298914, 524684, 920815, 1615647, 2835660, 4975898, 8732160, 15324202, 26891432, 47191909, 82815621, 145331022, 255039162
Offset: 1

Views

Author

Roger L. Bagula, Aug 13 2006

Keywords

Comments

As far as I can tell by searching the Internet, this matrix and this approach to sequences is entirely new and unique. The second of these matrices at 81 X 81 gives a new fractal that is Cantor dust like. aa = Table[M[[n, m]]*M[[i, j]], {n, 1, 9 }, {m, 1, 9}, {i, 1, 9}, {j, 1, 9}]; M2 = Flatten[Table[{Flatten[Table[aa[[ n, m]][[1, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[n, m]][[2, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[3, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[4, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[5, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[n, m]][[6, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[7, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[8, i]], {n, 1, 9}, {i, 1, 9}]], Flatten[Table[aa[[ n, m]][[9, i]], {n, 1, 9}, {i, 1, 9}]]}, {m, 1, 9}], 1]; ListDensityPlot[M2, Mesh -> False]

Crossrefs

Cf. A000931.

Programs

  • Mathematica
    Clear[t, M, a, v, a0] t[n_, m_] := {{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}[[n, m]] a0 = Table[t[n, m]*t[i, j], {n, 1, 3}, {m, 1, 3}, {i, 1, 3}, {j, 1, 3}]; M = Flatten[Table[{Flatten[Table[a0[[ n, m]][[1, i]], {n, 1, 3}, {i, 1, 3}]], Flatten[Table[a0[[n, m]][[2, i]], {n, 1, 3}, {i, 1, 3}]], Flatten[Table[a0[[n, m]][[3, i]], {n, 1, 3}, {i, 1, 3}]]}, {m, 1, 3}], 1] v[1] = Table[Fibonacci[n], {n, 0, 8}] v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] Det[M - x*IdentityMatrix[9]] Factor[%] aaa = Table[x /. NSolve[Det[M - x*IdentityMatrix[9]] == 0, x][[n]], {n, 1, 9}] Abs[aaa] a1 = Table[N[a[[n]]/a[[n - 1]]], {n, 7, 50}] ListDensityPlot[M, Mesh -> False]

Formula

M={{0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, { 0, 0, 0, 0, 0, 0, 1, 1, 0}, {0, 1, 0, 0, 0, 0, 0, 1, 0}, { 0, 0, 1, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 1, 1, 0}, { 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, { 0, 0, 0, 1, 1, 0, 0, 0, 0}} v[1] = Table[Fibonacci[n], {n, 0, 8}] v[n_] := v[n] = M.v[n - 1] a(n) = v[n][[1]]
G.f.: x^2(13-8x+4x^2+2x^3-2x^4)/((1-2x+x^2-x^3)(1+x-x^3)). a(n) = a(n-1) +a(n-2) +a(n-3) -a(n-4) +a(n-5) -a(n-6). Partial fraction decomposition yield decomposition in terms of A005314 and A050935. [From R. J. Mathar, Nov 26 2008]

A137495 a(n) = A098601(2n) + A098601(2n+1).

Original entry on oeis.org

2, 3, 4, 7, 13, 23, 40, 70, 123, 216, 379, 665, 1167, 2048, 3594, 6307, 11068, 19423, 34085, 59815, 104968, 184206, 323259, 567280, 995507, 1746993, 3065759, 5380032, 9441298, 16568323, 29075380, 51023735, 89540413, 157132471, 275748264, 483904470, 849193147, 1490230088
Offset: 0

Views

Author

Paul Curtz, Apr 27 2008

Keywords

Crossrefs

Programs

Formula

a(3n) = A135364(2n+1). a(3n+1) = A137584(2n+1). a(3n+2) = A137531(2n+2).
From R. J. Mathar, Jul 06 2011: (Start)
G.f.: ( -2+x ) / ( -1+2*x-x^2+x^3 ).
a(n) = 2*A005314(n+1) - A005314(n). (End)
Previous Showing 21-30 of 32 results. Next