cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 80 results. Next

A243950 Sum of the squares of q-binomial coefficients for q=2 in row n of triangle A022166, for n >= 0.

Original entry on oeis.org

1, 2, 11, 100, 1677, 49974, 2801567, 293257480, 59426801521, 23154622451162, 17786849024835651, 26694462878992491180, 79786045619298591331605, 469805503062346255040726910, 5538428985758278544518994721255, 129179377104085570277109465712798800, 6048537751321912538368011648067930447545
Offset: 0

Views

Author

Paul D. Hanna, Jun 21 2014

Keywords

Comments

a(n) is the number of Green's H classes in the semigroup of n X n matrices over GF(2) (cf. A359313). - Geoffrey Critzer, Jun 20 2023

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 100*x^3 + 1677*x^4 + 49974*x^5 + 2801567*x^6 + ...
Related integer series:
A(x)^(1/2) = 1 + x + 5*x^2 + 45*x^3 + 781*x^4 + 23981*x^5 + 1371885*x^6 + 145101805*x^7 + 29560055405*x^8 + ... + A243951(n)*x^n + ...
A022166, the triangle of q-binomial coefficients for q=2, begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1395,   651,   63,   1;
  1, 127, 2667, 11811, 11811, 2667, 127, 1; ...
from which we can illustrate the initial terms of this sequence:
  a(0) = 1^2 = 1;
  a(1) = 1^2 + 1^2 = 2;
  a(2) = 1^2 + 3^2 + 1^2 = 11;
  a(3) = 1^2 + 7^2 + 7^2 + 1^2 = 100;
  a(4) = 1^2 + 15^2 + 35^2 + 15^2 + 1^2 = 1677;
  a(5) = 1^2 + 31^2 + 155^2 + 155^2 + 31^2 + 1^2 = 49974;
  a(6) = 1^2 + 63^2 + 651^2 + 1395^2 + 651^2 + 63^2 + 1^2 = 2801567; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[QBinomial[n, k, 2]^2, {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    {A022166(n, k)=polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)}
    {a(n)=sum(k=0,n,A022166(n, k)^2)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ c * 2^(n^2/2), where c = 18.0796893855819714431... if n is even and c = 18.02126069886312898683... if n is odd. - Vaclav Kotesovec, Jun 23 2014
Sum_{n>=0} a(n)*x^n/A005329(n)^2 = E(x)^2 where E(x) = Sum_{n>=0} x^n/A005329(n)^2. - Geoffrey Critzer, Jun 20 2023

A263394 a(n) = Product_{i=1..n} (3^i - 2^i).

Original entry on oeis.org

1, 5, 95, 6175, 1302925, 866445125, 1784010512375, 11248186280524375, 215638979183932793125, 12512451767147700321078125, 2190917791975795178520458609375, 1155369543009475708416871245360859375, 1832567448623162714866960405275465241328125
Offset: 1

Views

Author

Bob Selcoe, Mar 02 2016

Keywords

Comments

Generally, for sequences of the form a(n) = Product_{i=1..n} j^i-k^i, where j>k>=1 and n>=1: given probability p=(k/j)^n that an outcome will occur at the n-th stage of an infinite process, then r = 1 - a(n)/j^((n^2+n)/2) is the probability that the outcome has occurred up to and including the n-th iteration. Here, j=3 and k=2, so p=(2/3)^n and r = 1-a(n)/A047656(n+1). The limiting ratio of r ~ 0.9307279.

Crossrefs

Cf. sequences of the form Product_{i=1..n}(j^i - 1): A005329 (j=2), A027871 (j=3), A027637 (j=4), A027872 (j=5), A027873 (j=6), A027875 (j=7),A027876 (j=8), A027877 (j=9), A027878 (j=10), A027879 (j=11), A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1: A269576 (j=4, k=3), A269661 (j=5, k=4).

Programs

Formula

a(n) = Product_{i=1..n} A001047(i).
a(n) ~ c * 3^(n*(n+1)/2), where c = QPochhammer(2/3) = 0.0692720728018644... . - Vaclav Kotesovec, Oct 10 2016

A269576 a(n) = Product_{i=1..n} (4^i - 3^i).

Original entry on oeis.org

1, 7, 259, 45325, 35398825, 119187843775, 1692109818073675, 99792176520894983125, 24195710911432718503470625, 23942309231057283642583777144375, 96180015123706384385790918441966041875
Offset: 1

Views

Author

Bob Selcoe, Mar 02 2016

Keywords

Comments

In general, for sequences of the form a(n) = Product_{i=1..n} j^i-k^i, where j>k>=1 and n>=1: given probability p=(k/j)^n that an outcome will occur at the n-th stage of an infinite process, then r = 1 - a(n)/j^((n^2+n)/2) is the probability that the outcome has occurred at or before the n-th iteration. Here j=4 and k=3, so p=(3/4)^n and r = 1-a(n)/A053763(n+1). The limiting ratio of r is ~ 0.9844550.

Crossrefs

Cf. sequences of the form Product_{i=1..n}(j^i - 1): A005329 (j=2), A027871 (j=3), A027637 (j=4), A027872 (j=5), A027873 (j=6), A027875 (j=7),A027876 (j=8), A027877 (j=9), A027878 (j=10), A027879 (j=11), A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1: A263394 (j=3, k=2), A269661 (j=5, k=4).

Programs

  • Maple
    seq(mul(4^i-3^i,i=1..n),n=0..20); # Robert Israel, Jun 01 2023
  • Mathematica
    Table[Product[4^i - 3^i, {i, n}], {n, 11}] (* Michael De Vlieger, Mar 07 2016 *)
    FoldList[Times,Table[4^n-3^n,{n,20}]] (* Harvey P. Dale, Jul 30 2018 *)
  • PARI
    a(n) = prod(k=1, n, 4^k-3^k); \\ Michel Marcus, Mar 05 2016

Formula

a(n) = Product_{i=1..n} A005061(i).
a(n) ~ c * 2^(n*(n+1)), where c = QPochhammer(3/4) = 0.015545038845451847... . - Vaclav Kotesovec, Oct 10 2016
a(n+3)/a(n+2) - 7 * a(n+2)/a(n+1) + 12 * a(n+1)/a(n) = 0. - Robert Israel, Jun 01 2023

A335011 Decimal expansion of Product_{k>=1} (1 - 1/2^k)^k.

Original entry on oeis.org

0, 9, 9, 6, 7, 9, 7, 3, 1, 2, 6, 2, 8, 7, 9, 9, 8, 5, 4, 6, 4, 6, 6, 5, 3, 5, 6, 0, 4, 6, 8, 4, 7, 3, 0, 4, 9, 6, 3, 4, 4, 4, 6, 1, 5, 0, 9, 7, 3, 1, 7, 5, 3, 0, 1, 2, 6, 4, 0, 9, 1, 8, 5, 5, 5, 4, 5, 6, 0, 6, 3, 0, 5, 0, 0, 9, 8, 0, 8, 2, 4, 2, 5, 3, 8, 6, 5, 2, 4, 0, 7, 2, 7, 6, 9, 2, 2, 4, 7, 3, 3, 5, 4, 3, 9, 4
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2020

Keywords

Examples

			0.0996797312628799854646653560468473049634446150973175301264091855545606305...
		

Crossrefs

Programs

  • Maple
    evalf(exp(-Sum(2^j / (j * (2^j - 1)^2), j=1..infinity)), 120);
  • PARI
    prodinf(k=1, (1 - 1/2^k)^k)

Formula

Equals exp(-Sum_{j>=1} 2^j / (j * (2^j - 1)^2)).

A027639 Order of unitary 2^n X 2^n group H_{n,4} acting on Siegel modular forms.

Original entry on oeis.org

4, 32, 3072, 2752512, 21139292160, 1342091380654080, 692647993190048071680, 2882479558988139892026900480, 96342151992701835341576224427212800, 25811138467998276182105365247324712232550400
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027639:= func< n | n eq 0 select 4 else 2^(n^2+2*n+2)*(&*[2^j-1: j in [1..n]]) >;
    [A027639(n): n in [0..15]]; // G. C. Greubel, Aug 04 2022
    
  • Maple
    seq(2^(n^2+2*n+2)*mul(2^i-1, i=1..n), n=0..10);
  • Mathematica
    a[n_]:= (-1)^n*2^(n^2 +2*n+2)*QPochhammer[2,2,n];
    Table[a[n], {n, 0, 15}] (* G. C. Greubel, Aug 04 2022 *)
  • PARI
    a(n) = my(ret=1); for(i=1,n, ret = ret<Kevin Ryde, Aug 13 2022
  • SageMath
    from sage.combinat.q_analogues import q_pochhammer
    def A027639(n): return (-1)^n*2^(n^2 + 2*n + 2)*q_pochhammer(n, 2, 2)
    [A027639(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
    

Formula

a(n) = 2^(n^2 + 2*n + 2) * Product_{j=1..n} (2^j - 1).
a(n) = (-1)^n * 2^(n^2 + 2*n + 2) * (2, 2){n}, where (q, q){n} is the q-Pochhammer symbol. - G. C. Greubel, Aug 04 2022
a(n) ~ c * 2^((3*n^2+5*n+4)/2), where c = A048651. - Amiram Eldar, Jul 09 2025

A123672 a(1) = 1; for n > 1, a(n) = (2^n-1)*a(n-1) + (-1)^n.

Original entry on oeis.org

1, 4, 27, 406, 12585, 792856, 100692711, 25676641306, 13120763707365, 13422541272634396, 27475941985082608611, 112513982428913282262046, 921602030075228695008418785, 15098606058722471710322924954656, 494736024726159230532151281989213151
Offset: 1

Views

Author

Benoit Cloitre, Nov 16 2006

Keywords

Comments

This sequence allows us to prove that the constant C defined in A048651 is irrational. Indeed, for any n > 1 we get |(C+1)*A005329(n) - a(n)| < 1/2^n.

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else (2^n-1)*Self(n-1)+(-1)^n: n in [1..15]]; // Vincenzo Librandi, Oct 18 2017
  • Mathematica
    RecurrenceTable[{a[n] == (2^n - 1) * a[n - 1] + (-1)^n, a[1] == 1}, a, {n, 1, 15}] (* Vaclav Kotesovec, Oct 10 2016 *)
  • PARI
    a(n)=if(n<2,1,(2^n-1)*a(n-1)+(-1)^n)
    

Formula

a(n) ~ c * 2^(n*(n+1)/2), where c = 0.372186658950350942813441530084543367... . - Vaclav Kotesovec, Oct 10 2016

A182263 G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n/n! * d^n/dx^n x*A(x)^2.

Original entry on oeis.org

1, 1, 6, 91, 2910, 187178, 24019884, 6154080275, 3151538898870, 3227331249742334, 6609648919647088788, 27073195436180090799006, 221783764770326660974008300, 3633705802215756626623500731892, 119069276624759801067298501607804376
Offset: 0

Views

Author

Paul D. Hanna, Apr 21 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 91*x^3 + 2910*x^4 + 187178*x^5 + 24019884*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 13*x^2 + 194*x^3 + 6038*x^4 + 381268*x^5 + 48457325*x^6 + 12358976074*x^7 + 6315716731394*x^8 + 6461044887240556*x^9 +...
such that a(n) = (2^n-1) times the coefficient of x^(n-1) in A(x)^2:
a(2) = 3 * 2 = 6;
a(3) = 7 * 13 = 91;
a(4) = 15 * 194 = 2910;
a(5) = 31 * 6038 = 187178;
a(6) = 63 * 381268 = 24019884; ...
		

Crossrefs

Programs

  • Mathematica
    a = ConstantArray[0,21]; a[[1]]=1; a[[2]]=1; Do[a[[n+1]] = (2^n-1)* Sum[a[[k+1]]*a[[n-k]],{k,0,n-1}],{n,2,20}]; a  (* Vaclav Kotesovec, Feb 22 2014 *)
  • PARI
    /* Generating Function Satisfies: */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} /* = n-th derivative of F */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+sum(k=1, n, x^k/k!*Dx(k, x*A^2+x*O(x^n) ))); polcoeff(A, n)}
    
  • PARI
    /* Recurrence: */
    {a(n)=if(n==0,1,(2^n-1)*sum(k=0,n-1,a(k)*a(n-k-1)))}
    for(n=0,15,print1(a(n),", "))
    
  • PARI
    /* Recurrence: */
    {a(n)=local(A=1+sum(k=1,n-1,a(k)*x^k)+x*O(x^n));if(n==0,1,(2^n-1)*polcoeff(A^2,n-1))}

Formula

a(n) = (2^n-1) * { [x^(n-1)] A(x)^2 } for n>0 with a(0)=1.
a(n) = (2^n-1) * Sum_{k=0..n-1} a(k)*a(n-k-1) for n>0 with a(0)=1.
a(n) ~ c * 2^((n-1)*(n+4)/2), where c = 0.71662215139236633556752111264619992099204134882... - Vaclav Kotesovec, Feb 22 2014

A216206 a(n) = Product_{i=1..n} ((-2)^i-1).

Original entry on oeis.org

1, -3, -9, 81, 1215, -40095, -2525985, 325852065, 83092276575, -42626337882975, -43606743654283425, 89350217747626737825, 365889141676531491393375, -2997729737755822508985921375, -49111806293653640164716349886625, 1609344780436736134557590069434814625
Offset: 0

Views

Author

R. J. Mathar, Mar 12 2013

Keywords

Comments

Signed partial products of A062510. This implies that all terms from a(1) on are multiples of 3.

Crossrefs

Programs

  • Maple
    A216206 := proc(n)
            mul( (-2)^i-1, i=1..n) ;
    end proc:
  • Mathematica
    Table[(-1)^n QPochhammer[-2, -2, n], {n, 0, 15}] (* Bruno Berselli, Mar 13 2013 *)
    Table[Product[(-2)^k-1,{k,n}],{n,0,20}] (* Harvey P. Dale, Oct 21 2024 *)

Formula

A015109(n,k) = a(n)/(a(k)*a(n-k)).
a(n) = (-3)^n*A015013(n) for n>0, a(0)=1. - Bruno Berselli and Alonso del Arte, Mar 13 2013
a(n) ~ (-1)^(floor(n/2)+1) * c * 2^(n*(n+1)/2), where c = Product_{k>=1} (1 - 1/(-2)^k) = 1.21072413030105918013... (A330862). - Amiram Eldar, Aug 10 2025

A259970 Triangle read by rows: coefficients eta(n,k) arising from the study of completely transitive graphs on n nodes.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 6, 28, 42, 21, 91, 510, 1050, 945, 315, 2820, 18631, 48360, 61845, 39060, 9765, 177661, 1351413, 4220433, 6942915, 6357015, 3075975, 615195
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2015

Keywords

Examples

			Triangle begins:
1,
0,1,
1,3,3,
6,28,42,21,
91,510,1050,945,315,
2820,18631,48360,61845,39060,9765,
177661,1351413,4220433,6942915,6357015,3075975,615195,
...
		

Crossrefs

Diagonals include A005327, A005328, A005329.
Row sums are A005014.

A269661 a(n) = Product_{i=1..n} (5^i - 4^i).

Original entry on oeis.org

1, 9, 549, 202581, 425622681, 4907003889249, 302963327126122509, 98490045052104040328301, 166544794872251942218390753281, 1451779137596368920662880897497387769, 64798450159010700654830227323217753649135349
Offset: 1

Views

Author

Bob Selcoe, Mar 02 2016

Keywords

Crossrefs

Cf. sequences of the form Product_{i=1..n}(j^i - 1): A005329 (j=2), A027871 (j=3), A027637 (j=4), A027872 (j=5), A027873 (j=6), A027875 (j=7), A027876 (j=8), A027877 (j=9), A027878 (j=10), A027879 (j=11), A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1: A263394 (j=3, k=2), A269576 (j=4, k=3).

Programs

  • Magma
    [&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
    
  • Mathematica
    Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *)
    Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *)
    FoldList[Times,Table[5^n-4^n,{n,15}]] (* Harvey P. Dale, Aug 28 2018 *)
  • PARI
    a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016

Formula

a(n) = Product_{i=1..n} A005060(i).
a(n) = 5^(binomial(n+1,2))*(4/5;4/5){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Mar 05 2016
a(n) ~ c * 5^(n*(n+1)/2), where c = QPochhammer(4/5) = 0.00336800585242312126... . - Vaclav Kotesovec, Oct 10 2016
Previous Showing 41-50 of 80 results. Next