A258179
Sum over all Dyck paths of semilength n of products over all peaks p of y_p^2, where y_p is the y-coordinate of peak p.
Original entry on oeis.org
1, 1, 5, 34, 312, 3649, 52161, 889843, 17796555, 411120395, 10838039407, 322752018060, 10762432731362, 398802951148255, 16312276452291935, 732189190349581890, 35876807697443520000, 1910107567584518883891, 110035833179472385285367, 6832792252684597270659486
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, y^2, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
nmax = 20; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - x/( (k+2)^2*x - 1/g[k+1]); CoefficientList[Series[g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2015, after Sergei N. Gladkovskii *)
A258180
Sum over all Dyck paths of semilength n of products over all peaks p of C(x_p,y_p), where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 4, 33, 517, 15326, 852912, 91023697, 19716262702, 8794395041567, 8016790849841585, 15556074485786226848, 64891787190080888991273, 561815453349204340865790817, 10402242033224422585780623039909, 423787530114579490372987256671625678
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258179,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, binomial(x, y), 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, Binomial[x, y], 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258181
Sum over all Dyck paths of semilength n of products over all peaks p of 2^(x_p-y_p), where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 5, 89, 5933, 1540161, 1584150165, 6497470064169, 106497075348688637, 6980195689972655145233, 1829876050804408046228327525, 1918781572083632396857805205324025, 8047973452254281276702044410544321359565, 135022681866797995009325363468217320506328688097
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258179,
A258180.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, 2^(x-y), 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..15);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, 2^(x - y), 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A115974
Number of Feynman diagrams (vanishing and non-vanishing) of order 2n for the proper self-energy function of quantum electrodynamics (QED).
Original entry on oeis.org
1, 2, 6, 42, 414, 5058, 72486, 1182762, 21573054, 434358018, 9565348806, 228740050602, 5904853053534, 163728751178178, 4855046674314726, 153367360732387242, 5143219420761900414, 182530741698302811138, 6835913695777897799046, 269455018264860747728682, 11152465473005099074500894, 483617145128737549802831298
Offset: 0
There are A000698(3)=10 self-energy diagrams of order 4, (n=2). Four of them are chained diagrams of order 2, (n=1) (of two kinds) which are simply connected, which leaves 10-4=6=a(2) proper diagrams.
- A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971.
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D 18 (1978), 1939-1949.
- R. J. Mathar, Table of Third and Fourth Order Feynman Diagrams of the Interacting Fermion Green's Function, Int. J. Quantum. Chem. 107 (10) (2007) 1975-1984.
- Adrian Ocneanu, On the inner structure of a permutation: bicolored partitions and Eulerians, trees and primitives; arXiv preprint arXiv:1304.1263 [math.CO], 2013.
- Wikipedia, Feynman diagram
-
A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end:
A115974 := proc(n::integer) local resul,m ; resul := A000698(n+1) ; for m from 1 to n-1 do resul := resul-A115974(m)*A000698(n+1-m) ; od: RETURN(resul) ; end:
for n from 1 to 20 do printf("%a,",A115974(n)) ; od ; # R. J. Mathar, Apr 24 2006
-
(* b = A000698 *) b[n_] := b[n] = (2n-1)!! - Sum[b[n-k]*(2k-1)!!, {k, n-1}]; a[0] = 1; a[n_] := a[n] = b[n+1] - Sum[a[m]*b[n+1-m], {m, n-1}]; Array[a, 22, 0] (* Jean-François Alcover, Jul 10 2017 *)
A258219
A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 10, 25, 1, 4, 18, 74, 208, 1, 5, 28, 153, 706, 2146, 1, 6, 40, 268, 1638, 8162, 26368, 1, 7, 54, 425, 3172, 20898, 110410, 375733, 1, 8, 70, 630, 5500, 44164, 307908, 1708394, 6092032, 1, 9, 88, 889, 8838, 82850, 702844, 5134293, 29752066, 110769550
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
4, 10, 18, 28, 40, 54, ...
25, 74, 153, 268, 425, 630, ...
208, 706, 1638, 3172, 5500, 8838, ...
2146, 8162, 20898, 44164, 82850, 143046, ...
...
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n,k)-> b(2*n, 0, false, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y -1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
A005413
Number of non-vanishing Feynman diagrams of order 2n+1 for the electron-electron-photon proper vertex function in quantum electrodynamics (QED).
Original entry on oeis.org
1, 1, 7, 72, 891, 12672, 202770, 3602880, 70425747, 1503484416, 34845294582, 872193147840, 23469399408510, 676090493459712, 20771911997290116, 678287622406488192, 23466105907996232835, 857623856612704266240
Offset: 0
G.f. = 1 + x + 7*x^2 + 72*x^3 + 891*x^4 + 12672*x^5 + 202770*x^6 + 3602880*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
- Robert Coquereaux, Table of n, a(n) for n = 0..250
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, pp. 1939-1949 (1978).
- Kevin Hartnett, Physicists uncover strange numbers in particle collisions, Quanta Magazine, November 15 2016.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 310.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- Wikipedia, Feynman diagram
-
a005413 n = a005413_list !! (n-1)
a005413_list = 1 : zipWith (*) [1 ..]
(zipWith (+) (tail a005412_list)
(zipWith (*) [4, 6 ..] a005413_list))
-- Reinhard Zumkeller, Jan 24 2014
-
a[n_]:= SeriesCoefficient[(4*x*(-2*x + (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])))/ (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])^3, {x,0,n}] (* Robert Coquereaux, Sep 12 2014 *)
-
{a(n) = my(A); if( n<2, n>=0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 2) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (n-1) * (A[n] + 2 * n * A[n-1]))}; /* Michael Somos, Jul 24 2011 */
A258220
T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258219(n,i); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 4, 6, 1, 25, 49, 15, 1, 208, 498, 217, 28, 1, 2146, 6016, 3360, 635, 45, 1, 26368, 84042, 56728, 13997, 1475, 66, 1, 375733, 1332661, 1046619, 316281, 43974, 2954, 91, 1, 6092032, 23660034, 21053089, 7479444, 1283817, 114576, 5334, 120, 1
Offset: 0
Triangle T(n,k) begins:
: 1;
: 1, 1;
: 4, 6, 1;
: 25, 49, 15, 1;
: 208, 498, 217, 28, 1;
: 2146, 6016, 3360, 635, 45, 1;
: 26368, 84042, 56728, 13997, 1475, 66, 1;
Column k=0 gives
A005411 (for n>0).
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n, k)-> b(2*n, 0, false, k):
T:= (n, k)-> add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!:
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y - 1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; T [n_, k_] := Sum[A[n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}]/k!; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, translated from Maple *)
A172455
The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.
Original entry on oeis.org
1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1
G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 307.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- NIST Digital Library of Mathematical Functions, Airy Functions.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Eric Weisstein's World of Mathematics, Airy Functions, contains the definitions of Ai(x), Bi(x).
Cf.
A000079 S(1,1,-1),
A000108 S(0,0,1),
A000142 S(1,-1,0),
A000244 S(2,1,-2),
A000351 S(4,1,-4),
A000400 S(5,1,-5),
A000420 S(6,1,-6),
A000698 S(2,-3,1),
A001710 S(1,1,0),
A001715 S(1,2,0),
A001720 S(1,3,0),
A001725 S(1,4,0),
A001730 S(1,5,0),
A003319 S(1,-2,1),
A005411 S(2,-4,1),
A005412 S(2,-2,1),
A006012 S(-1,2,2),
A006318 S(0,1,1),
A047891 S(0,2,1),
A049388 S(1,6,0),
A051604 S(3,1,0),
A051605 S(3,2,0),
A051606 S(3,3,0),
A051607 S(3,4,0),
A051608 S(3,5,0),
A051609 S(3,6,0),
A051617 S(4,1,0),
A051618 S(4,2,0),
A051619 S(4,3,0),
A051620 S(4,4,0),
A051621 S(4,5,0),
A051622 S(4,6,0),
A051687 S(5,1,0),
A051688 S(5,2,0),
A051689 S(5,3,0),
A051690 S(5,4,0),
A051691 S(5,5,0),
A053100 S(6,1,0),
A053101 S(6,2,0),
A053102 S(6,3,0),
A053103 S(6,4,0),
A053104 S(7,1,0),
A053105 S(7,2,0),
A053106 S(7,3,0),
A062980 S(6,-8,1),
A082298 S(0,3,1),
A082301 S(0,4,1),
A082302 S(0,5,1),
A082305 S(0,6,1),
A082366 S(0,7,1),
A082367 S(0,8,1),
A105523 S(0,-2,1),
A107716 S(3,-4,1),
A111529 S(1,-3,2),
A111530 S(1,-4,3),
A111531 S(1,-5,4),
A111532 S(1,-6,5),
A111533 S(1,-7,6),
A111546 S(1,0,1),
A111556 S(1,1,1),
A143749 S(0,10,1),
A146559 S(1,1,-2),
A167872 S(2,-3,2),
A172450 S(2,0,-1),
A172485 S(-1,-2,3),
A177354 S(1,2,1),
A292186 S(4,-6,1),
A292187 S(3, -5, 1).
-
a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
-
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
-
S(v1, v2, v3, N=16) = {
my(a = vector(N)); a[1] = 1;
for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
};
S(6,-4,-1)
\\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
\\ Gheorghe Coserea, May 12 2017
A005414
Feynman diagrams of order 2n with vertex skeletons.
Original entry on oeis.org
1, 1, 13, 93, 1245, 18093, 308605, 5887453, 124221373, 2864305277, 71589605885, 1927010749181, 55572839581437, 1709604517055229, 55893262628149245, 1935654236127347709, 70799043456576835581, 2727771901780930132989, 110438840436968476274685, 4688223534904569925386237
Offset: 1
- P. Cvitanovic, B. Lautrup and R. B. Pearson, Number and weights of Feynman diagrams, Phys. Rev. D 18 (1978), 1939-1949.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq[nn_] := Module[{x, y=0, y1=0, n=1}, While[n++; True, y1 = x^2 + x^4 + 2x^6 - 3x^2 y + x^4 (-y + x D[y, x]/2) - x^6 (8y + x D[y, x]/2) + y^2 + x y D[y, x] + (x^2 - x^4)(3y^2 + 3/2 x y D[y, x]) + x^6 (12y^2 + 3/2 x y D[y, x]) - x^2 (y^3 + 3/2 x y^2 D[y, x]) + x^4 (5y^3 + 3/2 x y^2 D[y, x]) - x^6 (8y^3 + 3/2 x y^2 D[y, x]) + (-x^4 + x^6)(2y^4 + 1/2 x y^3 D[y, x]) + O[x]^(2nn+1); If[y1 == y, Break[]]; y = y1]; CoefficientList[y, x^2]] // Rest;
seq[20] (* Jean-François Alcover, Oct 05 2018, after Gheorghe Coserea *)
-
seq(N) = {
my(x='x+O('x^(2*N+1)), y=0, y1=0, n=1);
while (n++,
y1 = x^2 + x^4 + 2*x^6 - 3*x^2*y + x^4*(-y + 1/2*x*y') +
-x^6*(8*y + 1/2*x*y') + y^2 + x*y*y' +
(x^2 - x^4)*(3*y^2 + 3/2*x*y*y') + x^6*(12*y^2 + 3/2*x*y*y') +
-x^2*(y^3 + 1/2*x*3*y^2*y') + x^4*(5*y^3 + 1/2*x*3*y^2*y') +
-x^6*(8*y^3 + 1/2*x*3*y^2*y') + (-x^4+x^6)*(2*y^4 + 1/8*x*4*y^3*y');
if (y1 == y, break); y=y1);
vector(N, n, polcoeff(y, 2*n));
};
seq(20) \\ Gheorghe Coserea, Oct 17 2017
A172450
The case S(2,0,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.
Original entry on oeis.org
1, 3, 12, 63, 432, 3798, 41472, 543483, 8301312, 144502218, 2818685952, 60826110678, 1437615931392, 36914181252588, 1022923413061632, 30419533530730323, 966125479213596672, 32634383834158752258, 1168128785923721920512
Offset: 1
x + 3*x^2 + 12*x^3 + 63*x^4 + 432*x^5 + 3798*x^6 + 41472*x^7 + 543483*x^8 + ...
- G. C. Greubel, Table of n, a(n) for n = 1..400
- A. V. Belitsky, G. P. Korchemsky, Octagon at finite coupling, arXiv:2003.01121 [hep-th], 2020.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 294.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
-
ser := series(BesselK(0,-1/x)/BesselK(1,-1/x) - 1, x, 20):
seq((1/2)*4^n*coeff(ser,x,n), n=0..19); # Peter Luschny, Dec 11 2017
-
Clear[a]; a[1] = 1; a[n_]:= a[n] = 2*n*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
-
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = 2 * k * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
Comments