cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A258179 Sum over all Dyck paths of semilength n of products over all peaks p of y_p^2, where y_p is the y-coordinate of peak p.

Original entry on oeis.org

1, 1, 5, 34, 312, 3649, 52161, 889843, 17796555, 411120395, 10838039407, 322752018060, 10762432731362, 398802951148255, 16312276452291935, 732189190349581890, 35876807697443520000, 1910107567584518883891, 110035833179472385285367, 6832792252684597270659486
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, y^2, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);
  • Mathematica
    nmax = 20; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - x/( (k+2)^2*x - 1/g[k+1]); CoefficientList[Series[g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2015, after Sergei N. Gladkovskii *)

Formula

G.f.: T(0), where T(k) = 1 - x/( (k+2)^2*x - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 20 2015

A258180 Sum over all Dyck paths of semilength n of products over all peaks p of C(x_p,y_p), where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 1, 4, 33, 517, 15326, 852912, 91023697, 19716262702, 8794395041567, 8016790849841585, 15556074485786226848, 64891787190080888991273, 561815453349204340865790817, 10402242033224422585780623039909, 423787530114579490372987256671625678
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, binomial(x, y), 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, Binomial[x, y], 1] + b[x - 1, y + 1, True]]];
    a[n_] := b[2*n, 0, False];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)

A258181 Sum over all Dyck paths of semilength n of products over all peaks p of 2^(x_p-y_p), where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 1, 5, 89, 5933, 1540161, 1584150165, 6497470064169, 106497075348688637, 6980195689972655145233, 1829876050804408046228327525, 1918781572083632396857805205324025, 8047973452254281276702044410544321359565, 135022681866797995009325363468217320506328688097
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, 2^(x-y), 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..15);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, 2^(x - y), 1] + b[x - 1, y + 1, True]]];
    a[n_] := b[2*n, 0, False];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)

Formula

a(n) ~ c * 2^(n*(n-1)), where c = 1.47818066525747143617276638534... . - Vaclav Kotesovec, Jun 01 2015

A115974 Number of Feynman diagrams (vanishing and non-vanishing) of order 2n for the proper self-energy function of quantum electrodynamics (QED).

Original entry on oeis.org

1, 2, 6, 42, 414, 5058, 72486, 1182762, 21573054, 434358018, 9565348806, 228740050602, 5904853053534, 163728751178178, 4855046674314726, 153367360732387242, 5143219420761900414, 182530741698302811138, 6835913695777897799046, 269455018264860747728682, 11152465473005099074500894, 483617145128737549802831298
Offset: 0

Views

Author

R. J. Mathar, Mar 15 2006

Keywords

Comments

The number of diagrams of A000698 left if the connected improper diagrams are removed: a(n)<=A000698(n+1). G.f. is essentially the inversion of the G.f. of A000698.
From Groux Roland, Mar 22 2011: (Start)
a(n) is the INVERTi transform of A001147(n+2), starting at n=2.
Let rho(x)=sqrt(x)*exp(-x/2)/sqrt(2*Pi); s(x)=integral(rho'(t)*log(abs(1-t/x)),t=0..infinity), and mu(x)=rho(x)/((s(x))^2+Pi^2*(rho(x))^2), then a(n+1) is the moment of order n for the measure of density mu(x) over the interval 0..infinity.
(End)
Vanishing diagrams: QED diagrams containing electron loops with an odd number of vertices are set to 0 (Furry theorem). See comments in A000698. This sequence (which is twice A167872(n-1) for n>=1) counts all the diagrams (vanishing and non-vanishing) for the self-energy function of QED. The sequence A005412 gives the number of non-vanishing diagrams for the self-energy. - Robert Coquereaux, Sep 12 2014

Examples

			There are A000698(3)=10 self-energy diagrams of order 4, (n=2). Four of them are chained diagrams of order 2, (n=1) (of two kinds) which are simply connected, which leaves 10-4=6=a(2) proper diagrams.
		

References

  • A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971.

Crossrefs

Programs

  • Maple
    A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end:
    A115974 := proc(n::integer) local resul,m ; resul := A000698(n+1) ; for m from 1 to n-1 do resul := resul-A115974(m)*A000698(n+1-m) ; od: RETURN(resul) ; end:
    for n from 1 to 20 do printf("%a,",A115974(n)) ; od ; # R. J. Mathar, Apr 24 2006
  • Mathematica
    (* b = A000698 *) b[n_] := b[n] = (2n-1)!! - Sum[b[n-k]*(2k-1)!!, {k, n-1}]; a[0] = 1; a[n_] := a[n] = b[n+1] - Sum[a[m]*b[n+1-m], {m, n-1}]; Array[a, 22, 0] (* Jean-François Alcover, Jul 10 2017 *)

Formula

a(n) = A000698(n+1) - Sum_{m=1..n-1} a(m)*A000698(n+1-m).
1-Sum_{n>=1} a(n)*x^n = 1/(1+Sum_{n>=1} A000698(n+1)*x^n) (G.f.)
G.f. 2 - Q(0) where Q(k) = 1 - (k+2)*x/Q(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 20 2012
G.f. 2 - x - x/(Q(0)-1) where Q(k) = 1 + (4*k+1)*x/(1 - (4*k+3)*x/((4*k+3)*x + 1/Q(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 12 2012
G.f.: 2 + x/(G(0)-1) where G(k) = 1 - x*(k+1)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: 2 - G(0) where G(k) = 1 + (2*k+1)*x - x*(2*k+3)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
G.f.: 2 - x - Q(0), where Q(k) = 1 - x*(2*k+3)/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
Call Sf the G.f. for the sequence 1, 2, 10, 74, ..., i.e., A000698 with first term (equal to 1) dropped. Call Sigmaf the G.f. for the sequence 0, 2, 6, 42, ..., i.e., this sequence A115974 with a first term of order 0 (equal to 0) added. Then Sf = 1/(1-Sigmaf). - Robert Coquereaux, Sep 14 2014
a(n) ~ 2^(n + 3/2) * n^(n+1) / exp(n). - Vaclav Kotesovec, Jan 02 2019

Extensions

More terms from R. J. Mathar, Apr 24 2006, Nov 07 2006
Name and definition clarified by Robert Coquereaux, Sep 14 2014
a(0)=1 prepended by Alois P. Heinz, Jun 22 2015

A258219 A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 10, 25, 1, 4, 18, 74, 208, 1, 5, 28, 153, 706, 2146, 1, 6, 40, 268, 1638, 8162, 26368, 1, 7, 54, 425, 3172, 20898, 110410, 375733, 1, 8, 70, 630, 5500, 44164, 307908, 1708394, 6092032, 1, 9, 88, 889, 8838, 82850, 702844, 5134293, 29752066, 110769550
Offset: 0

Views

Author

Alois P. Heinz, May 23 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.
Conjecture: the g.f. G(k,x) for the k-th column satisfies the Riccati differential equation 2*x^2*d/dx(G(k,x)) + 1 + (k*x - 1)*G(k,x) + x*G^2(k,x) = 0 and hence, by Stokes 1982, has the continued fraction representation G(k,x) = 1/(1 - (k+1)*x/(1 - 3*x/(1 - (k+3)*x/(1 - 5*x/(1 - (k+5)*x/(1 - 7*x/(1 - ...))))))) of Stieltjes type. - Peter Bala, Jul 28 2022

Examples

			Square array A(n,k) begins:
     1,    1,     1,     1,     1,      1, ...
     1,    2,     3,     4,     5,      6, ...
     4,   10,    18,    28,    40,     54, ...
    25,   74,   153,   268,   425,    630, ...
   208,  706,  1638,  3172,  5500,   8838, ...
  2146, 8162, 20898, 44164, 82850, 143046, ...
  ...
		

Crossrefs

Columns k=0-2 give: A005411 (for n>0), A000698(n+1), A005412(n+1).
Rows n=0-2 give: A000012, A000027(k+1), A028552(k+1).
Main diagonal gives A292693.

Programs

  • Maple
    b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
                     + b(x-1, y+1, true, k)  ))
        end:
    A:= (n,k)-> b(2*n, 0, false, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y -1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258220(n,i).

A005413 Number of non-vanishing Feynman diagrams of order 2n+1 for the electron-electron-photon proper vertex function in quantum electrodynamics (QED).

Original entry on oeis.org

1, 1, 7, 72, 891, 12672, 202770, 3602880, 70425747, 1503484416, 34845294582, 872193147840, 23469399408510, 676090493459712, 20771911997290116, 678287622406488192, 23466105907996232835, 857623856612704266240
Offset: 0

Views

Author

Keywords

Comments

From Robert Coquereaux, Sep 12 2014: (Start)
QED diagrams are graphs with two kinds of edges (lines): a (non-oriented), f (oriented), and only one kind of (internal) vertex: aff.
They may have internal and external (i.e., pendant) lines.
QED diagrams containing loops of type f with an odd number of vertices are set to 0 (vanishing diagrams).
Proper diagrams also called one-particle-irreducible diagrams (1PI) are connected diagrams that remain connected when an arbitrary internal line is cut.
The proper vertex function of QED is described by proper (1PI) diagrams with one external line of type a (photon) and two external lines of type f (electron). Non-vanishing diagrams only exist if the number of vertices is odd.
The number of non-vanishing Feynman diagrams for the proper vertex function is obtained from g*Gamma(g) = g (1 + 1 g^2 + 7 g^4 + 72 g^6 + ...) where the exponent p of g^p gives the number of (internal) vertices, p is called the order of the diagram.
Write g*Gamma(g) = g (1 + x + 7 x2 + 72 x3 + ...) with x = g^2.
The sequence a(n) gives the coefficient of x^n.
Relation with A005411: Gamma (g) = (S(g) - 1)/(g^2 S(g)^3) where S(g) = 1 + g^2 + 4 g^4 + 25 g^6 + ... is sum A005411(n) g^(2n), hence the g.f. in terms of modified Bessel functions.
(End)

Examples

			G.f. = 1 + x + 7*x^2 + 72*x^3 + 891*x^4 + 12672*x^5 + 202770*x^6 + 3602880*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.

Crossrefs

Cvitanovic et al. relate this sequence to A000698 and A005411. - Robert Munafo, Jan 24 2010

Programs

  • Haskell
    a005413 n = a005413_list !! (n-1)
    a005413_list = 1 : zipWith (*) [1 ..]
                               (zipWith (+) (tail a005412_list)
                               (zipWith (*) [4, 6 ..] a005413_list))
    -- Reinhard Zumkeller, Jan 24 2014
  • Mathematica
    a[n_]:= SeriesCoefficient[(4*x*(-2*x + (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])))/ (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])^3, {x,0,n}] (* Robert Coquereaux, Sep 12 2014 *)
  • PARI
    {a(n) = my(A); if( n<2, n>=0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 2) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (n-1) * (A[n] + 2 * n * A[n-1]))}; /* Michael Somos, Jul 24 2011 */
    

Formula

See recurrence in Martin-Kearney paper.
a(n) = (n-1)*(A005412(n) + 2*n*A005412(n-1)) if n > 1.
From Robert Coquereaux, Sep 12 2014: (Start)
The g.f. for this sequence is (U - 1)/(U^3 x) where U is the g.f. for A005411.
G.f.: (4*x*(-2*x + (1 - K(1, -(1/(4*x))) / K(0, -(1/(4*x))))))/
(1 - K(1, -(1/(4*x))) / K(0, -(1/(4*x))))^3
where K(p, z) denotes the modified Bessel function of the second kind (order p, argument z). This is a small improvement of a result obtained in the 1980 book "Quantum Field Theory".
(End)

Extensions

Name clarified and reference added by Robert Coquereaux, Sep 12 2014

A258220 T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258219(n,i); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 4, 6, 1, 25, 49, 15, 1, 208, 498, 217, 28, 1, 2146, 6016, 3360, 635, 45, 1, 26368, 84042, 56728, 13997, 1475, 66, 1, 375733, 1332661, 1046619, 316281, 43974, 2954, 91, 1, 6092032, 23660034, 21053089, 7479444, 1283817, 114576, 5334, 120, 1
Offset: 0

Views

Author

Alois P. Heinz, May 23 2015

Keywords

Examples

			Triangle T(n,k) begins:
:     1;
:     1,     1;
:     4,     6,     1;
:    25,    49,    15,     1;
:   208,   498,   217,    28,    1;
:  2146,  6016,  3360,   635,   45,  1;
: 26368, 84042, 56728, 13997, 1475, 66, 1;
		

Crossrefs

Column k=0 gives A005411 (for n>0).
Main diagonal and lower diagonal give: A000012, A000384(n+1).
Row sums give A258221.
T(2n,n) gives A292692.

Programs

  • Maple
    b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
                     + b(x-1, y+1, true, k)  ))
        end:
    A:= (n, k)-> b(2*n, 0, false, k):
    T:= (n, k)-> add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y - 1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; T [n_, k_] := Sum[A[n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}]/k!; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, translated from Maple *)

Formula

T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258219(n,i).

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017

A005414 Feynman diagrams of order 2n with vertex skeletons.

Original entry on oeis.org

1, 1, 13, 93, 1245, 18093, 308605, 5887453, 124221373, 2864305277, 71589605885, 1927010749181, 55572839581437, 1709604517055229, 55893262628149245, 1935654236127347709, 70799043456576835581, 2727771901780930132989, 110438840436968476274685, 4688223534904569925386237
Offset: 1

Views

Author

Keywords

References

  • P. Cvitanovic, B. Lautrup and R. B. Pearson, Number and weights of Feynman diagrams, Phys. Rev. D 18 (1978), 1939-1949.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    seq[nn_] := Module[{x, y=0, y1=0, n=1}, While[n++; True, y1 = x^2 + x^4 + 2x^6 - 3x^2 y + x^4 (-y + x D[y, x]/2) - x^6 (8y + x D[y, x]/2) + y^2 + x y D[y, x] + (x^2 - x^4)(3y^2 + 3/2 x y D[y, x]) + x^6 (12y^2 + 3/2 x y D[y, x]) - x^2 (y^3 + 3/2 x y^2 D[y, x]) + x^4 (5y^3 + 3/2 x y^2 D[y, x]) - x^6 (8y^3 + 3/2 x y^2 D[y, x]) + (-x^4 + x^6)(2y^4 + 1/2 x y^3 D[y, x]) + O[x]^(2nn+1); If[y1 == y, Break[]]; y = y1]; CoefficientList[y, x^2]] // Rest;
    seq[20] (* Jean-François Alcover, Oct 05 2018, after Gheorghe Coserea *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(2*N+1)), y=0, y1=0, n=1);
      while (n++,
      y1 = x^2 + x^4 + 2*x^6 - 3*x^2*y + x^4*(-y + 1/2*x*y') +
           -x^6*(8*y + 1/2*x*y') + y^2 + x*y*y' +
           (x^2 - x^4)*(3*y^2 + 3/2*x*y*y') + x^6*(12*y^2 + 3/2*x*y*y') +
           -x^2*(y^3 + 1/2*x*3*y^2*y') + x^4*(5*y^3 + 1/2*x*3*y^2*y') +
           -x^6*(8*y^3 + 1/2*x*3*y^2*y') + (-x^4+x^6)*(2*y^4 + 1/8*x*4*y^3*y');
      if (y1 == y, break); y=y1);
      vector(N, n, polcoeff(y, 2*n));
    };
    seq(20) \\ Gheorghe Coserea, Oct 17 2017

Formula

a(n) ~ 4*exp(-5/2)/Pi * n * 2^n * n! * (1 - 9/(4*n) - 67/(32*n^2) + O(1/n^3)). (see Borinsky link) - Gheorghe Coserea, Oct 19 2017

Extensions

More terms from Gheorghe Coserea, Oct 17 2017

A172450 The case S(2,0,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 3, 12, 63, 432, 3798, 41472, 543483, 8301312, 144502218, 2818685952, 60826110678, 1437615931392, 36914181252588, 1022923413061632, 30419533530730323, 966125479213596672, 32634383834158752258, 1168128785923721920512
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			x + 3*x^2 + 12*x^3 + 63*x^4 + 432*x^5 + 3798*x^6 + 41472*x^7 + 543483*x^8 + ...
		

Crossrefs

Cf. A005411.

Programs

  • Maple
    ser := series(BesselK(0,-1/x)/BesselK(1,-1/x) - 1, x, 20):
    seq((1/2)*4^n*coeff(ser,x,n), n=0..19); # Peter Luschny, Dec 11 2017
  • Mathematica
    Clear[a]; a[1] = 1; a[n_]:= a[n] = 2*n*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = 2 * k * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */

Formula

a(n) = 2 * n * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 3*x / (1 - 1*x / (1 - 5*x / (1 - 3*x / (1 - 7*x / (1 - 5*x / (1 - 9*x / (1 - 7*x / (1 - 11*x / (1 - 9*x / (1 - 13*x / (1 - 11*x / ... )))))))))))). - Michael Somos, Jan 03 2013
G.f.: (1/(2*Q(0) - 1) - 1)/(2*x) where Q(k) = 1 - x*(2*k+1)/( 1 - x*(2*k+1)/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Apr 02 2013
G.f.: Q(0)/x - 1/x, where Q(k)= 1 - x*(2*k-1)/(1 - x*(2*k+3)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
a(n) ~ 2^n * (n-1)! / Pi. - Vaclav Kotesovec, Jan 19 2015
a(n) = (1/2)*4^n*[x^n](BesselK(0,-1/x)/BesselK(1,-1/x) - 1). - Peter Luschny, Dec 11 2017
Previous Showing 11-20 of 24 results. Next