cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A387152 Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..n} binomial(k, j)*|Stirling1(n, j)|.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 3, 3, 1, 0, 6, 7, 6, 4, 1, 0, 24, 23, 16, 10, 5, 1, 0, 120, 98, 57, 30, 15, 6, 1, 0, 720, 514, 257, 115, 50, 21, 7, 1, 0, 5040, 3204, 1407, 546, 205, 77, 28, 8, 1, 0, 40320, 23148, 9076, 3109, 1021, 336, 112, 36, 9, 1
Offset: 0

Views

Author

Peter Luschny, Aug 27 2025

Keywords

Examples

			Array begins:
  [0]  1,     1,      1,      1,       1,       1,       1, ...
  [1]  0,     1,      2,      3,       4,       5,       6, ...
  [2]  0,     1,      3,      6,      10,      15,      21, ...
  [3]  0,     2,      7,     16,      30,      50,      77, ...
  [4]  0,     6,     23,     57,     115,     205,     336, ...
  [5]  0,    24,     98,    257,     546,    1021,    1750, ...
  [6]  0,   120,    514,   1407,    3109,    6030,   10696, ...
  [7]  0,   720,   3204,   9076,   20695,   41330,   75356, ...
  [8]  0,  5040,  23148,  67456,  157865,  323005,  602517, ...
  [9]  0, 40320, 190224, 567836, 1358564, 2837549, 5396650, ...
		

Crossrefs

Rows: A000012 [0], A001477 [1], A000217 [2], A005581 [3], A387204 [4].
Columns: A000007 [0], A000142 [shifted, 1], A387205 [2].
Contains A271700 in transpose.
Cf. A211210 (main diagonal), A130534.

Programs

  • Maple
    A := (n, k) -> add(binomial(k, j)*abs(Stirling1(n, j)), j = 0..n):
    seq(seq(A(n-k, k), k = 0..n), n = 0..10);
    # Expanding rows or columns:
    RowSer := n -> series((1+x)^k*GAMMA(x + n)/GAMMA(x), x, 12):
    Trow := n -> k -> coeff(RowSer(n), x, k):
    ColSer := n -> series(orthopoly:-L(n, log(1 - x)), x, 12):
    Tcol := k -> n -> n! * coeff(ColSer(k), x, n):
    seq(lprint(seq(Trow(n)(k), k = 0..7)), n = 0..9);
    seq(lprint(seq(Tcol(k)(n), n = 0..7)), k = 0..9);
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if n == 0: return 1
        if k == 0: return 0
        return (n - 1) * T(n - 1, k) + T(n, k - 1) - (n - 2) * T(n - 1, k - 1)
    for n in range(7): print([T(n, k) for k in range(7)])

Formula

T(n, k) = n! * [x^n] Laguerre(k, log(1 - x)).
From Natalia L. Skirrow, Aug 27 2025: (Start)
D-finite with T(n,k) = (n-1)*T(n-1,k)+T(n,k-1)-(n-2)*T(n-1,k-1).
O.g.f.: hypergeom([1,y/(1-y)],[],x)/(1-y).
Row o.g.f.: (y/(1-y))_n/(1-y), where (x)_n is the Pochhammer symbol/rising factorial.
Row o.g.f. is also 0^n + y/(1-y)^(n+1)*Prod_{j=1..n-2}(j+1-j*y).
E.g.f.: 1/((1-y)*(1-x)^(y/(1-y))).
Column e.g.f.: hypergeom([-k],[1],log(1-y)).
T(n,k) = [x^k] (1+x)^k*(x)_n.
(End)

A141429 Triangle T(n, k) = (k+1)*(n-k+1), read by rows.

Original entry on oeis.org

2, 4, 3, 6, 6, 4, 8, 9, 8, 5, 10, 12, 12, 10, 6, 12, 15, 16, 15, 12, 7, 14, 18, 20, 20, 18, 14, 8, 16, 21, 24, 25, 24, 21, 16, 9, 18, 24, 28, 30, 30, 28, 24, 18, 10, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 24, 33, 40, 45, 48, 49, 48, 45, 40, 33, 24, 13
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 06 2008

Keywords

Examples

			Triangle begins as:
   2;
   4,  3;
   6,  6,  4;
   8,  9,  8,  5;
  10, 12, 12, 10,  6;
  12, 15, 16, 15, 12,  7;
  14, 18, 20, 20, 18, 14,  8;
  16, 21, 24, 25, 24, 21, 16,  9;
  18, 24, 28, 30, 30, 28, 24, 18, 10;
  20, 27, 32, 35, 36, 35, 32, 27, 20, 11;
		

Crossrefs

Programs

  • Magma
    [(k+1)*(n-k+1): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 30 2021
    
  • Maple
    A141429 := proc(n,k)
            (k+1)*(n-k+1) ;
    end proc:
    seq(seq(A141429(n,m),m=1..n),n=1..14) ; # R. J. Mathar, Nov 10 2011
  • Mathematica
    Table[(k+1)*(n-k+1), {n,15}, {k,n}]//Flatten
  • Sage
    flatten([[(k+1)*(n-k+1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 30 2021

Formula

T(n, k) = (k+1)*(n-k+1).
T(n, k) = A158823(n+2, k+2).
Sum_{k=1..n} T(n, k) = A005581(n+1).

Extensions

Edited by G. C. Greubel, Mar 30 2021

A180174 Triangle read by rows of the numbers C(n,k) of k-subsets of a quadratically populated n-multiset M.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 5, 7, 9, 10, 10, 10, 10, 10, 9, 7, 5, 3, 1, 1, 4, 9, 16, 25, 35, 45, 55, 65, 75, 84, 91, 96, 99, 100, 100, 100, 99, 96, 91, 84, 75, 65, 55, 45, 35, 25, 16, 9, 4, 1, 1, 5, 14, 30, 55, 90, 135, 190, 255, 330, 414, 505, 601, 700, 800, 900, 1000, 1099
Offset: 0

Views

Author

Thomas Wieder, Aug 15 2010

Keywords

Comments

The multiplicity m(i) of the i-th element with 1 <= i <= n is m(i)=i^2.
Thus M=[1,2,2,2,2,...,i^2 x i,...,n^2 x n].
Row sum is equal to A028361.
Column for k=2 is equal to AA000096.
Column for k=3 is equal to AA005581.
Column for k=4 is equal to AA005582.
The number of coefficients C(n,k) for given n is equal to A056520.

Examples

			For n=4 one has M=[1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4].
For k=7 we have 55 subsets from M:
[1, 2, 2, 3, 3, 4, 4], [1, 2, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 4, 4],
[1, 2, 2, 3, 4, 4, 4], [1, 2, 2, 3, 3, 3, 4], [1, 2, 2, 2, 3, 4, 4],
[1, 2, 2, 2, 3, 3, 4], [2, 2, 3, 3, 4, 4, 4], [2, 2, 3, 3, 3, 4, 4],
[2, 2, 2, 3, 3, 4, 4], [1, 2, 2, 2, 3, 3, 3], [1, 2, 2, 2, 4, 4, 4],
[1, 3, 3, 3, 4, 4, 4], [2, 3, 3, 3, 4, 4, 4], [2, 2, 2, 3, 4, 4, 4],
[2, 2, 2, 3, 3, 3, 4], [1, 2, 3, 4, 4, 4, 4], [1, 2, 3, 3, 3, 3, 4],
[1, 2, 2, 2, 2, 3, 4], [1, 2, 2, 3, 3, 3, 3], [1, 2, 2, 2, 2, 3, 3],
[1, 2, 2, 4, 4, 4, 4], [1, 2, 2, 2, 2, 4, 4], [1, 3, 3, 4, 4, 4, 4],
[1, 3, 3, 3, 3, 4, 4], [2, 3, 3, 4, 4, 4, 4], [2, 3, 3, 3, 3, 4, 4],
[2, 2, 3, 4, 4, 4, 4], [2, 2, 3, 3, 3, 3, 4], [2, 2, 2, 2, 3, 4, 4],
[2, 2, 2, 2, 3, 3, 4], [2, 2, 2, 3, 3, 3, 3], [2, 2, 2, 2, 3, 3, 3],
[2, 2, 2, 4, 4, 4, 4], [2, 2, 2, 2, 4, 4, 4], [3, 3, 3, 4, 4, 4, 4],
[3, 3, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 3, 3], [1, 2, 4, 4, 4, 4, 4],
[1, 3, 4, 4, 4, 4, 4], [1, 3, 3, 3, 3, 3, 4], [2, 3, 4, 4, 4, 4, 4],
[2, 3, 3, 3, 3, 3, 4], [2, 2, 3, 3, 3, 3, 3], [2, 2, 4, 4, 4, 4, 4],
[3, 3, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 4, 4], [1, 3, 3, 3, 3, 3, 3],
[1, 4, 4, 4, 4, 4, 4], [2, 3, 3, 3, 3, 3, 3], [2, 4, 4, 4, 4, 4, 4],
[3, 4, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 3, 4], [3, 3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4].
		

Crossrefs

Programs

  • Maple
    with(combinat)
    kend := 4;
    Liste := NULL;
    for k from 0 to kend do
    Liste := Liste, `$`(k, k^2)
    end do;
    Liste := [Liste];
    for k from 0 to 2^(kend+1)-1 do
    Teilergebnis[k] := choose(Liste, k)
    end do;
    seq(nops(Teilergebnis[k]), k = 0 .. 2^(kend+1)-1)
    ' Excel VBA
    Sub A180174()
    Dim n As Long, nend As Long, k As Long, kk As Long, length_row As Long, length_sum As Long
    Dim ATable(10, -1000 To 1000) As Double, Summe As Double
    Dim offset_row As Integer, offset_column As Integer
    Worksheets("Tabelle2").Select
    Cells.Select
    Selection.ClearContents
    Range("A1").Select
    offset_row = 1
    offset_column = 1
    nend = 7
    ATable(0, 0) = 1
    Cells(0 + offset_row, 0 + offset_column) = 1
    For n = 1 To nend
    length_row = n * (n + 1) * (2 * n + 1) / 6
    length_sum = n ^ 2 + 1
    For k = 0 To length_row / 2
    Summe = 0
    For kk = k - length_sum + 1 To k
    Summe = Summe + ATable(n - 1, kk)
    Next kk
    ATable(n, k) = Summe
    Cells(n + offset_row, k + offset_column) = ATable(n, k)
    ATable(n, length_row - k) = Summe
    Cells(n + offset_row, length_row - k + 0 + offset_column) = ATable(n, k)
    Next k
    Next n
    End Sub

Formula

C(0,0) = 0.
C(n,k) = sum_{j=(k-LS+1)}^{k} C(n-1,j).
for n > 0 and k=1,...,LR with LS = n^2+1 and LR = n*(n+1)*(2*n+1)/6.
C(n,k) = C(n,LR-k).

A271700 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j-1,-n-1)*S1(k,j), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 16, 1, 4, 10, 30, 115, 1, 5, 15, 50, 205, 1021, 1, 6, 21, 77, 336, 1750, 10696, 1, 7, 28, 112, 518, 2814, 17766, 128472, 1, 8, 36, 156, 762, 4308, 28050, 207942, 1734447, 1, 9, 45, 210, 1080, 6342, 42528, 322860, 2746815, 25937683
Offset: 0

Views

Author

Peter Luschny, Apr 14 2016

Keywords

Examples

			Triangle starts:
[1]
[1, 1]
[1, 2, 3]
[1, 3, 6,  16]
[1, 4, 10, 30,  115]
[1, 5, 15, 50,  205, 1021]
[1, 6, 21, 77,  336, 1750, 10696]
[1, 7, 28, 112, 518, 2814, 17766, 128472]
		

Crossrefs

A000027 (col. 1), A000217, A161680 (col. 2), A005581 (col. 3), A211210 (diag. n,n), A211211 (diag. n,n-1).

Programs

  • Maple
    T := (n,k) -> add(abs(Stirling1(k,j))*binomial(-j-1,-n-1)*(-1)^(n-j),j=0..n);
    seq(seq(T(n,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[Table[Sum[(-1)^(n-j)Binomial[-j-1,-n-1] Abs[StirlingS1[k,j]],{j,0,n}], {n,0,9},{k,0,n}]]

A346038 Triangle read by rows T(n, k) such that Fib(n, x+1) = Sum_{k=1..n} T(n, k)*Fib(k, x) where Fib(n, x) is the n-th Fibonacci polynomial.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 3, 3, 1, -2, 2, 6, 4, 1, -4, -3, 7, 10, 5, 1, -3, -12, 0, 16, 15, 6, 1, 5, -18, -21, 11, 30, 21, 7, 1, 20, -4, -50, -24, 35, 50, 28, 8, 1, 29, 48, -51, -98, -9, 78, 77, 36, 9, 1, 1, 124, 45, -164, -150, 42, 147, 112, 45, 10, 1, -94, 128, 282, -67, -365, -177, 154, 250, 156, 55, 11, 1
Offset: 1

Views

Author

Michel Marcus, Jul 02 2021

Keywords

Examples

			Triangle begins:
   1;
   1,  1;
   1,  2, 1;
   0,  3, 3,  1;
  -2,  2, 6,  4, 1;
  -4, -3, 7, 10, 5, 1;
  ...
The first 3 Fibonacci polynomials are 1, x, x^2 + 1. So F3(n, x+1) = x^2 + 2*x + 2  = 1*1 + 2*x + 1*(x^2+1) = 1*F(1,x) + 2*F(2, x) + 1*F(3,x), so the 3rd row is [1, 2, 1].
		

Crossrefs

Cf. A000012, A000027, A000217, A005581: diagonals.
Cf. A162515 and A168561 (Fibonacci polynomials coefficients).

Programs

  • PARI
    rowV(n) = my(v= if (n==0, [0], n--; vector(n+1, k, k--; if (k%2==0, binomial(n-k/2, k/2))))); Pol(v); \\ A162515
    rowT(n, vfp, vfp1) = {my(vp1 = vfp1[n], vc = vector(n), i=n); forstep (k = poldegree(vp1), 0, -1, vc[i] = polcoef(vp1, k)/polcoef(vfp[k+1], k); vp1 -= vfp[k+1]*vc[i]; i--;); vc;}
    tabl(nn) = {my(vfp = vector(nn, k, rowV(k))); my(vfp1 = vector(nn, k, subst(vfp[k], x, x+1))); for(n=1, nn, print((rowT(n, vfp, vfp1))););}

A363378 Third Lie-Betti number of a cycle graph on n vertices.

Original entry on oeis.org

12, 25, 41, 68, 105, 152, 210, 280, 363, 460, 572, 700, 845, 1008, 1190, 1392, 1615, 1860, 2128, 2420, 2737, 3080, 3450, 3848, 4275, 4732, 5220, 5740, 6293, 6880, 7502, 8160, 8855, 9588, 10360, 11172, 12025, 12920, 13858
Offset: 3

Views

Author

Samuel J. Bevins, Jun 01 2023

Keywords

Comments

Sequence T(n,3) in A360572.

Crossrefs

Cf. A005581, A054000, A028347, A000027, A360572 (cycle graph triangle)

Programs

  • Python
    def A363378(n):
        values = [12,25,41]
        for i in range(6, n+1):
            result = (i*(i+11)*(i-2))/6
            values.append(result)
        return values

Formula

a(3) = 12, a(4) = 25, a(5) = 41, a(n) = n*(n+11)*(n-2)/6 for n >= 6.
a(n) = A005581(n-4) + A054000(n-1) + A028347(n-2) + A000027(n) for n >= 6.
a(n) = A106058(n+1) - 2 for n >= 6. - Hugo Pfoertner, Jun 02 2023

A191532 Triangle T(n,k) read by rows: T(n,n) = 2n+1, T(n,k)=k for k

Original entry on oeis.org

1, 0, 3, 0, 1, 5, 0, 1, 2, 7, 0, 1, 2, 3, 9, 0, 1, 2, 3, 4, 11, 0, 1, 2, 3, 4, 5, 13, 0, 1, 2, 3, 4, 5, 6, 15, 0, 1, 2, 3, 4, 5, 6, 7, 17, 0, 1, 2, 3, 4, 5, 6, 7, 8, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 21, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 25, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27
Offset: 0

Views

Author

Paul Curtz, Jun 05 2011

Keywords

Comments

We can build products of linear polynomials with these T(n,k) defining the absolute terms:
1+n = A000027(1+n) =2, 3, 4, 5, 6, 7,
n*(3+n)/2 = A000096(1+n) =2, 5, 9, 14, 20, 27,
n*(1+n)*(5+n)/6 = A005581(2+n) =2, 7, 16, 30, 50, 77,
n*(1+n)*(2+n)*(7+n)/24 = A005582(1+n) =2, 9, 25, 55, 105, 182,
n*(1+n)*(2+n)*(3+n)*(9+n)/120 = A005583(n) =2, 11, 36, 91, 196, 378,
n*(1+n)*(2+n)*(3+n)*(4+n)*(11+n)/720 = A005584(n)=2, 13, 49, 140, 336, 714,

Examples

			1;
0,3;
0,1,5;
0,1,2,7;
0,1,2,3,9;
0,1,2,3,4,11;
		

Crossrefs

Cf. A191302.

Formula

T(n,k) = A002262(n-1,k).
sum_{k=0..n} T(n,k) = A000217(1+n).

A238156 Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 7, 4, 0, 2, 11, 16, 5, 0, 2, 15, 36, 30, 6, 0, 2, 19, 64, 91, 50, 7, 0, 2, 23, 100, 204, 196, 77, 8, 0, 2, 27, 144, 385, 540, 378, 112, 9, 0, 2, 31, 196, 650, 1210, 1254, 672, 156, 10, 0, 2, 35, 256, 1015, 2366, 3289, 2640, 1122, 210, 11
Offset: 0

Views

Author

Philippe Deléham, Feb 18 2014

Keywords

Comments

Row sums are A001519(n+1) = A122367(n).
Diagonal sums are A052969(n).

Examples

			Triangle begins:
1;
0, 2;
0, 2, 3;
0, 2, 7, 4;
0, 2, 11, 16, 5;
0, 2, 15, 36, 30, 6;
0, 2, 19, 64, 91, 50, 7;
0, 2, 23, 100, 204, 196, 77, 8;
0, 2, 27, 144, 385, 540, 278, 112, 9;
0, 2, 31, 196, 650, 1210, 1254, 672, 156, 10;
0, 2, 35, 256, 1015, 2366, 3289, 2640, 1122, 210, 11;
...
		

Crossrefs

Formula

G.f.: (1-x)/(1-x-2*x*y+x^2*y^2).
Sum_{k=0..n} T(n,k)*2^k = 4^n = A000302(n).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n.

A320657 a(n) is the number of non-unimodal sequences with n nonzero terms that arise as a convolution of sequences of binomial coefficients preceded by a finite number of ones.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 7, 12, 16, 24, 30, 41, 50, 65, 77, 96, 112, 136, 156, 185, 210, 245, 275, 316, 352, 400, 442, 497, 546, 609, 665, 736, 800, 880, 952, 1041, 1122, 1221, 1311, 1420, 1520, 1640, 1750, 1881, 2002, 2145, 2277, 2432, 2576, 2744, 2900, 3081, 3250, 3445, 3627, 3836, 4032
Offset: 1

Views

Author

Tricia Muldoon Brown, Oct 17 2018

Keywords

Comments

For integers x,y,p,q >= 0, set (s_i){i>=1} to be the sequence of p ones followed by the binomial coefficients C(x,j) for 0 <= j <= x followed by an infinite string of zeros, and set (t_i){i>=1} to be the sequence of q ones followed by the binomial coefficients C(y,j) for 0 <= j <= y followed by an infinite string of zeros. Then a(n) is the number of non-unimodal sequences (r_i){i>=1} where r_i = Sum{j=1..i} s_j*t_{i-j} for some(s_i) and (t_i) such that x + y + p + q + 1 = n.
Let T be a rooted tree created by identifying the root vertices of two broom graphs. a(n) is the number of trees T on n vertices whose poset of connected, vertex-induced subgraphs is not rank unimodal.

Crossrefs

Cf. A005993, A024206. Equals A005581 for n even.

Programs

  • Mathematica
    Table[If[EvenQ[n], 2*(Sum[Floor[i(i+4)/4], {i,0,(n/2)}]) - Floor[n^2/16], 2*(Sum[Floor[i(i+4)/4], {i,0,(n-1)/2}]) - Floor[(n-1)^2/16] + Floor[(n+1)(n+9)/16]], {n,0,40}]

Formula

a(n+10) = 2*(Sum_{i=1..n/2} floor(i*(i+4)/4)) - floor(n^2/16) for n even.
a(n+10) = 2*(Sum_{i=1..(n-1)/2} floor(i(i+4)/4)) - floor((n-1)^2/16) + floor((n+1)*(n+9)/16) for n odd.
Previous Showing 41-49 of 49 results.