cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 71 results. Next

A257633 a(n) = binomial(4*n + 2,n).

Original entry on oeis.org

1, 6, 45, 364, 3060, 26334, 230230, 2035800, 18156204, 163011640, 1471442973, 13340783196, 121399651100, 1108176102180, 10142940735900, 93052749919920, 855420636763836, 7877932561061640, 72667580816130436, 671262558647881200, 6208770443303347920
Offset: 0

Views

Author

Peter Bala, Nov 04 2015

Keywords

Crossrefs

Programs

  • Maple
    #A257633
    seq(binomial(4*n + 2,n), n = 0..20);
  • Mathematica
    Table[Binomial[4*n + 2, n], {n, 0, 120}] (* Michael De Vlieger, Apr 11 2025 *)
  • PARI
    vector(30, n, n--; binomial(4*n+2, n)) \\ Altug Alkan, Nov 05 2015

Formula

The o.g.f. equals f(x)*g(x)^2, where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A052203 (k = 1), A224274 (k = 3) and A004331 (k = 4).

A226761 G.f.: 1 / (1 + 12*x*G(x)^2 - 13*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 16, 118, 1004, 8601, 75076, 662796, 5903676, 52949332, 477533356, 4326309406, 39343725716, 358943047438, 3283745710968, 30112624408488, 276715616909148, 2547523969430508, 23491659440021920, 216942761366305144, 2006084011596742384, 18572529488934397689
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 16*x^2 + 118*x^3 + 1004*x^4 + 8601*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 12*x*G(x)^2 - 13*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+3*k,n-k]*Binomial[2*n-3*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 17 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+12*x*G^2-13*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-x*G^2-13*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+3*k, n-k)*binomial(2*n-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(3*k, n-k)*binomial(4*n-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(4*n+3*k, n-k)*binomial(-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(3*k, n-k) * C(4*n-3*k, k).
a(n) = Sum_{k=0..n} C(n+3*k, n-k) * C(3*n-3*k, k).
a(n) = Sum_{k=0..n} C(2*n+3*k, n-k) * C(2*n-3*k, k).
a(n) = Sum_{k=0..n} C(3*n+3*k, n-k) * C(n-3*k, k).
a(n) = Sum_{k=0..n} C(4*n+3*k, n-k) * C(-3*k, k).
G.f.: 1 / (1 - x*G(x)^2 - 13*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+5/2)/(7*3^(3*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 17 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+3*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} (-4)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-3)^k * 4^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-3+4*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 7*(B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A346578 a(n) = (1/(4*n)) * Sum_{d|n} mu(n/d) * binomial(4*d,d).

Original entry on oeis.org

1, 3, 18, 112, 775, 5598, 42287, 328640, 2615085, 21191125, 174303162, 1451424960, 12211799223, 103655906781, 886568152950, 7633233227520, 66105170315083, 575445689879247, 5032380942945321, 44191451767056400, 389514699012969936, 3444925385161998518, 30561576846316109863
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 24 2021

Keywords

Comments

Inverse Euler transform of A002293.
Moebius transform of A261497.

Crossrefs

Programs

  • Mathematica
    Table[(1/(4 n)) Sum[MoebiusMu[n/d] Binomial[4 d, d], {d, Divisors[n]}], {n, 23}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(4*d,d))/(4*n); \\ Michel Marcus, Jul 24 2021

A371771 a(n) = Sum_{k=0..floor(n/3)} binomial(4*n-3*k-1,n-3*k).

Original entry on oeis.org

1, 3, 21, 166, 1377, 11748, 102088, 898677, 7987305, 71517307, 644134026, 5829345492, 52964836184, 482846377185, 4414405051413, 40458397722306, 371605426607673, 3419639400458316, 31521758873514301, 291000881055737811, 2690082750919841442
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(4*n-3*k-1,n-3*k),k=0..n/3) end proc:
    map(f, [$0..30]); # Robert Israel, Feb 28 2025
  • PARI
    a(n) = sum(k=0, n\3, binomial(4*n-3*k-1, n-3*k));

Formula

a(n) = [x^n] 1/((1-x^3) * (1-x)^(3*n)).
a(n) = binomial(4*n-1, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [(1-4*n)/3, 2*(1-2*n)/3, 1-4*n/3], 1). - Stefano Spezia, Apr 06 2024
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: 81*n*(3*n - 2)*(3*n - 1)*(9037*n^4 - 61391*n^3 + 154035*n^2 - 169317*n + 68836)*a(n) = 27*(2394805*n^7 - 19820156*n^6 + 66654684*n^5 - 117198990*n^4 + 115250735*n^3 - 62650734*n^2 + 17209736*n - 1814400)*a(n-1) - 3*(7021749*n^7 - 58192764*n^6 + 196050236*n^5 - 345531070*n^4 + 340849311*n^3 - 186035886*n^2 + 51353864*n - 5443200)*a(n-2) + 8*(2*n - 3)*(4*n - 9)*(4*n - 7)*(9037*n^4 - 25243*n^3 + 24084*n^2 - 9272*n + 1200)*a(n-3).
a(n) ~ 2^(8*n + 9/2) / (7 * sqrt(Pi*n) * 3^(3*n + 3/2)). (End)

A378484 Expansion of (Sum_{k>=0} binomial(4*k,k) * x^k)^4.

Original entry on oeis.org

1, 16, 208, 2480, 28176, 310336, 3344688, 35472672, 371570320, 3853862080, 39650662720, 405221752112, 4117879215472, 41643345090240, 419362920305952, 4207604570770752, 42079232716865424, 419609034657373120, 4173470598366784960, 41413032430984848832, 410071444666659404352
Offset: 0

Views

Author

Seiichi Manyama, Nov 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[Binomial[4*k,k] * x^k, {k, 0, nmax}]^4, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 19 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, binomial(4*k, k)*x^k)^4)

Formula

a(n) = Sum_{i+j+k+l=n, i,j,k,l >= 0} binomial(4*i,i) * binomial(4*j,j) * binomial(4*k,k) * binomial(4*l,l).
G.f.: B(x)^4 where B(x) is the g.f. of A005810.
27*a(n) - 256*a(n-1) = 18*A078995(n) + 8*A005810(n) for n > 0.
a(n) ~ n * 2^(8*n + 2) / 3^(3*n + 2) * (1 + 2^(7/2)/(3^(3/2)*sqrt(Pi*n))). - Vaclav Kotesovec, Jul 19 2025

A378802 a(n) = n * binomial(4*n, n).

Original entry on oeis.org

0, 4, 56, 660, 7280, 77520, 807576, 8288280, 84146400, 847289520, 8476605280, 84362730452, 836022413616, 8255176274800, 81266247493200, 797911337890800, 7816430993273280, 76417576884236016, 745777615780501920, 7266758081613043600, 70706322844243486400, 687103929058903836480
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n * Binomial[4*n, n]; Array[a, 25, 0]
  • PARI
    a(n) = n * binomial(4*n, n);

Formula

a(n) = n * A005810(n).
a(n) = A374522(n) + n.
a(n) == 0 (mod 4).
Sum_{n>=1} 1/a(n) = A225847.
Sum_{n>=1} (-1)^n/a(n) = A229703.

A385498 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n,k).

Original entry on oeis.org

1, 6, 48, 408, 3564, 31626, 283548, 2560872, 23255964, 212101176, 1941110628, 17815257048, 163896843300, 1510891524252, 13952756564424, 129048895061208, 1195191116753436, 11082661017288264, 102877353868090080, 955912961224763232, 8889969049985302464
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(81/8)^n - Binomial[4*n, n]*(-1 + Hypergeometric2F1[1, -3*n, 1 + n, -1/2]), {n,0,25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(3*n)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(3*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 24*n*(3*n - 2)*(3*n - 1)*(139*n^3 - 366*n^2 + 143*n + 132)*a(n) = (588665*n^6 - 2281011*n^5 + 2262209*n^4 + 1245939*n^3 - 3359986*n^2 + 1877400*n - 322560)*a(n-1) - 648*(2*n - 3)*(4*n - 7)*(4*n - 5)*(139*n^3 + 51*n^2 - 172*n + 48)*a(n-2).
a(n) ~ 2^(8*n + 1/2) / (sqrt(Pi*n) * 3^(3*n - 1/2)). (End)
G.f.: g/((3-2*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(12-6*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025

A096130 Triangle read by rows: T(n,k) = binomial(k*n,n), 1 <= k <= n.

Original entry on oeis.org

1, 1, 6, 1, 20, 84, 1, 70, 495, 1820, 1, 252, 3003, 15504, 53130, 1, 924, 18564, 134596, 593775, 1947792, 1, 3432, 116280, 1184040, 6724520, 26978328, 85900584, 1, 12870, 735471, 10518300, 76904685, 377348994, 1420494075, 4426165368, 1, 48620, 4686825, 94143280, 886163135, 5317936260, 23667689815, 85113005120, 260887834350
Offset: 1

Views

Author

Amarnath Murthy, Jul 04 2004

Keywords

Examples

			Triangle begins:
  1;
  1,   6;
  1,  20,   84;
  1,  70,  495,  1820;
  1, 252, 3003, 15504, 53130;
  ...
		

Crossrefs

Row-sums give A096131. The leading diagonal is A014062. Cf. A096131.
Cf. A007318.

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Binomial(k*n,n)))); # Muniru A Asiru, Aug 12 2018
  • Maple
    a:=(n,k)->binomial(k*n,n): seq(seq(a(n,k),k=1..n),n=1..10); # Muniru A Asiru, Aug 12 2018
  • PARI
    tabl(nrows) = {for (n=1, nrows, for (k=1, n, print1(binomial(k*n, n), ", ");); print(););} \\ Michel Marcus, May 14 2013
    

Formula

T(n, 1) = 1;
T(n, 2) = A000984(n) for n > 1;
T(n, 3) = A005809(n) for n > 2;
T(n, 4) = A005810(n) for n > 3;
T(n, n) = A014062(n).

Extensions

Corrected and extended by Reinhard Zumkeller, Jan 09 2005

A357508 a(n) = binomial(4*n,2*n) - 2*binomial(4*n,n).

Original entry on oeis.org

-1, -2, 14, 484, 9230, 153748, 2434964, 37748520, 580043790, 8886848740, 136151207764, 2088760285456, 32108266614164, 494648505828904, 7637081136832840, 118158193386475984, 1831647087068431374, 28444051172077725444, 442429676097305612324
Offset: 0

Views

Author

Peter Bala, Oct 01 2022

Keywords

Comments

Sun and Wan's supercongruence stated below apparently generalizes as follows:
Let m be an integer and k a positive integer. Define u(n) = binomial((m+2)*n,(k+1)*n) - binomial(m,k)*binomial((m+2)*n,n). We conjecture that u(n) == u(1) (mod p^5) for all primes p >= 7. [added 22 Oct 2022: the conjecture is true: apply Helou and Terjanian, Section 3, Proposition 2.]
Conjecture: for r >= 2, u(p^r) == u(p^(r-1)) ( mod p^(3*r+3) ) for all primes p >= 5. - Peter Bala, Oct 13 2022

Crossrefs

Programs

  • Maple
    seq(binomial(4*n,2*n) - 2*binomial(4*n,n), n = 0..20);

Formula

a(n) = A001448(n) - 2*A005810(n).
a(p) == -2 (mod p^5) for all primes p >= 7. (Sun and Wan, Corollary 1.5.)

A364507 a(n) = (5*n)!*(4*n)! / ((3*n)!^2 * (2*n)! * n!).

Original entry on oeis.org

1, 40, 5880, 1101100, 229265400, 50678855040, 11641642112100, 2746924727976000, 661097260785195000, 161538994454795003200, 39949572934939198410880, 9976687616280042928424700, 2511716999955421326631644900, 636662322699394050738883008000
Offset: 0

Views

Author

Peter Bala, Jul 27 2023

Keywords

Comments

Row 2 of A364506.

Examples

			Examples of supercongruences:
a(7) - a(1) = 2746924727976000 - 40 = (2^3)*5*(7^4)*28601881799 == 0 (mod 7^4).
a(11) - a(1) = 9976687616280042928424700 - 40 = (2^2)*5*(11^3)*18397*3568463* 5708869513 == 0 (mod 11^3).
		

Crossrefs

Programs

  • Maple
    seq( (5*n)!*(4*n)!*(2*n)! / ((3*n)!^2 * (2*n)!^2 * n!), n = 0..15);
  • Mathematica
    A364507[n_]:=(5n)!(4n)!/((3n)!^2(2n)!n!);Array[A364507,15,0] (* Paolo Xausa, Oct 06 2023 *)

Formula

a(n) = Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k) * binomial(4*n, 2*n + k)^2 (showing a(n) to be integral). Compare with Dixon's identity, Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k)^3 = (3*n)!/n!^3 = A006480(n).
P-recursive: a(n) = (20/9)*(4*n-1)*(4*n-3)*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)/((3*n-1)^2*(3*n-2)^2*n^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * sqrt(10)/(6*Pi*n), where c = (2^6)*(5^5)/(3^6).
a(n) = [x^n] G(x)^(20*n), where the power series G(x) = 1 + 2*x + 69*x^2 + 5647*x^3 + 618860*x^4 + 79241349*x^5 + 11177111981*x^6 + 1684171189810*x^7 + 266238907746252*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^20, where the power series F(x) = 1 + 2*x + 149*x^2 + 18647*x^3 + 2913620*x^4 + 515276389*x^5 + 98628630997*x^6 + 19944410220744*x^7 + 4199273746072180*x^8 + ... appears to have integer coefficients.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r [added Aug 04 2023: the conjecture follows from Meštrović. equation 39].
a(n) = binomial(4*n,n)*binomial(5*n,2*n). - Christian Krause, Aug 03 2023
Previous Showing 31-40 of 71 results. Next