A253411
Indices of centered octagonal numbers (A016754) which are also centered pentagonal numbers (A005891).
Original entry on oeis.org
1, 76, 646, 108871, 930811, 156991186, 1342228096, 226381180621, 1935491982901, 326441505463576, 2790978097114426, 470728424497295251, 4024588480547018671, 678790061683594287646, 5803453797970703808436, 978814798219318465489561, 8368576352085274344745321
Offset: 1
76 is in the sequence because the 76th centered octagonal number is 22801, which is also the 96th centered pentagonal number.
-
LinearRecurrence[{1,1442,-1442,-1,1},{1,76,646,108871,930811},20] (* Harvey P. Dale, Feb 04 2016 *)
-
Vec(-x*(x^4+75*x^3-872*x^2+75*x+1)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))
A253579
Centered pentagonal numbers (A005891) which are also centered octagonal numbers (A016754).
Original entry on oeis.org
1, 22801, 1666681, 47411143081, 3465632747641, 98584929298781641, 7206305041398228481, 204993755756525779060081, 14984516863488437537571601, 426256225957302372068628976801, 31158234954289838149958560780201, 886340998518823181233611960679431001
Offset: 1
22801 is in the sequence because it is the 96th centered pentagonal number and the 76th centered octagonal number.
A253621
Indices of centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).
Original entry on oeis.org
1, 6, 66, 781, 9301, 110826, 1320606, 15736441, 187516681, 2234463726, 26626048026, 317278112581, 3780711302941, 45051257522706, 536834378969526, 6396961290111601, 76226701102369681, 908323451938324566, 10823654722157525106, 128975533213951976701
Offset: 1
6 is in the sequence because the 6th centered heptagonal number is 106, which is also the 7th centered pentagonal number.
-
I:=[1,6]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2)-5: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
-
RecurrenceTable[{a[1] == 1, a[2] == 6, a[n] == 12 a[n-1] - a[n-2] - 5}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
-
Vec(-x*(x^2-7*x+1)/((x-1)*(x^2-12*x+1)) + O(x^100))
A253622
Centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).
Original entry on oeis.org
1, 106, 15016, 2132131, 302747551, 42988020076, 6103996103206, 866724458635141, 123068769130086781, 17474898492013687726, 2481312517096813570276, 352328902529255513291431, 50028222846637186073812891, 7103655315319951166968139056
Offset: 1
106 is in the sequence because it is the 6th centered heptagonal number and the 7th centered pentagonal number.
-
LinearRecurrence[{143,-143,1},{1,106,15016},20] (* Harvey P. Dale, Feb 25 2016 *)
-
Vec(-x*(x^2-37*x+1)/((x-1)*(x^2-142*x+1)) + O(x^100))
A253654
Indices of pentagonal numbers (A000326) which are also centered pentagonal numbers (A005891).
Original entry on oeis.org
1, 6, 46, 361, 2841, 22366, 176086, 1386321, 10914481, 85929526, 676521726, 5326244281, 41933432521, 330141215886, 2599196294566, 20463429140641, 161108236830561, 1268402465503846, 9986111487200206, 78620489432097801, 618977803969582201, 4873201942324559806
Offset: 1
6 is in the sequence because the 6th pentagonal number is 51, which is also the 5th centered pentagonal number.
-
LinearRecurrence[{9,-9,1},{1,6,46},30] (* Harvey P. Dale, Nov 12 2017 *)
-
Vec(-x*(x^2-3*x+1)/((x-1)*(x^2-8*x+1)) + O(x^100))
A253921
Indices of octagonal numbers (A000567) which are also centered pentagonal numbers (A005891).
Original entry on oeis.org
1, 51, 271, 24421, 130461, 11770711, 62881771, 5673458121, 30308883001, 2734595043451, 14608818724551, 1318069137485101, 7041420316350421, 635306589672775071, 3393949983662178211, 306216458153140098961, 1635876850704853547121, 147595697523223854923971
Offset: 1
51 is in the sequence because the 51st octagonal number is 7701, which is also the 56th centered pentagonal number.
-
I:=[1,51,271,24421,130461]; [n le 5 select I[n] else Self(n-1)+482*Self(n-2)-482*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
-
CoefficientList[Series[(x^4 + 50 x^3 - 262 x^2 + 50 x + 1)/((1 - x) (x^2 - 22 x + 1) (x^2 + 22 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
-
Vec(-x*(x^4+50*x^3-262*x^2+50*x+1)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))
A253922
Indices of centered pentagonal numbers (A005891) which are also octagonal numbers (A000567).
Original entry on oeis.org
1, 56, 297, 26752, 142913, 12894168, 68883529, 6214961984, 33201717825, 2995598781880, 16003159107881, 1443872397903936, 7713489488280577, 695943500190915032, 3717885930192129993, 335443323219623141248, 1792013304863118375809, 161682985848358163166264
Offset: 1
56 is in the sequence because the 56th centered pentagonal is 7701, which is also the number 51st octagonal number.
-
I:=[1,56,297,26752,142913]; [n le 5 select I[n] else Self(n-1)+482*Self(n-2)-482*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
-
CoefficientList[Series[(55 x^3 + 241 x^2 - 55 x - 1)/((x - 1)(x^2 - 22 x + 1) (x^2 + 22 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
-
Vec(x*(55*x^3+241*x^2-55*x-1)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))
A253923
Octagonal numbers (A000567) which are also centered pentagonal numbers (A005891).
Original entry on oeis.org
1, 7701, 219781, 1789106881, 51059956641, 415648888795141, 11862351246525781, 96564381140875635681, 2755885166244302532001, 22434030154994860543881301, 640252753580346501593005701, 5211918753572151610134715970401, 148744800214537374776845967930881
Offset: 1
7701 is in the sequence because it is the 51st octagonal number and the 56th centered pentagonal number.
-
I:=[1,7701,219781,1789106881,51059956641]; [n le 5 select I[n] else Self(n-1)+232322*Self(n-2)-232322*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
-
CoefficientList[Series[(x^4 + 7700 x^3 - 20242 x^2 + 7700 x + 1) / ((1 - x) (x^2 - 482 x + 1) (x^2 + 482 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
-
Vec(-x*(x^4+7700*x^3-20242*x^2+7700*x+1)/((x-1)*(x^2-482*x+1)*(x^2+482*x+1)) + O(x^100))
A254626
Indices of triangular numbers (A000217) that are also centered pentagonal numbers (A005891).
Original entry on oeis.org
1, 3, 23, 61, 421, 1103, 7563, 19801, 135721, 355323, 2435423, 6376021, 43701901, 114413063, 784198803, 2053059121, 14071876561, 36840651123, 252509579303, 661078661101, 4531100550901, 11862575248703, 81307300336923, 212865275815561, 1459000305513721
Offset: 1
3 is in the sequence because the 3rd triangular number is 6, which is also the 2nd centered pentagonal number.
-
LinearRecurrence[{1,18,-18,-1,1},{1,3,23,61,421},30] (* Harvey P. Dale, Jun 15 2024 *)
-
Vec(-x*(x+1)^2*(x^2+1)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^100))
A254782
Indices of centered hexagonal numbers (A003215) which are also centered pentagonal numbers (A005891).
Original entry on oeis.org
1, 11, 231, 5061, 111101, 2439151, 53550211, 1175665481, 25811090361, 566668322451, 12440892003551, 273132955755661, 5996484134620981, 131649518005905911, 2890292911995309051, 63454794545890893201, 1393115187097604341361, 30585079321601404616731
Offset: 1
11 is in the sequence because the 11th centered hexagonal number is 331, which is also the 12th centered pentagonal number.
-
LinearRecurrence[{23,-23,1},{1,11,231},20] (* Harvey P. Dale, Mar 01 2022 *)
-
Vec(-x*(x^2-12*x+1)/((x-1)*(x^2-22*x+1)) + O(x^100))
Comments