cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 90 results. Next

A253411 Indices of centered octagonal numbers (A016754) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 76, 646, 108871, 930811, 156991186, 1342228096, 226381180621, 1935491982901, 326441505463576, 2790978097114426, 470728424497295251, 4024588480547018671, 678790061683594287646, 5803453797970703808436, 978814798219318465489561, 8368576352085274344745321
Offset: 1

Views

Author

Colin Barker, Dec 31 2014

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 8*y^2 - 5*x + 8*y = 0, the corresponding values of x being A253410.

Examples

			76 is in the sequence because the 76th centered octagonal number is 22801, which is also the 96th centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1442,-1442,-1,1},{1,76,646,108871,930811},20] (* Harvey P. Dale, Feb 04 2016 *)
  • PARI
    Vec(-x*(x^4+75*x^3-872*x^2+75*x+1)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))

Formula

a(n) = a(n-1) + 1442*a(n-2) - 1442*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(x^4 + 75*x^3 - 872*x^2 + 75*x + 1) / ((x-1)*(x^2 - 38*x + 1)*(x^2 + 38*x + 1)).

A253579 Centered pentagonal numbers (A005891) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 22801, 1666681, 47411143081, 3465632747641, 98584929298781641, 7206305041398228481, 204993755756525779060081, 14984516863488437537571601, 426256225957302372068628976801, 31158234954289838149958560780201, 886340998518823181233611960679431001
Offset: 1

Views

Author

Colin Barker, Jan 04 2015

Keywords

Examples

			22801 is in the sequence because it is the 96th centered pentagonal number and the 76th centered octagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+22800*x^3-435482*x^2+22800*x+1)/((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+2079362*a(n-2)-2079362*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+22800*x^3-435482*x^2+22800*x+1) / ((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)).

A253621 Indices of centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 6, 66, 781, 9301, 110826, 1320606, 15736441, 187516681, 2234463726, 26626048026, 317278112581, 3780711302941, 45051257522706, 536834378969526, 6396961290111601, 76226701102369681, 908323451938324566, 10823654722157525106, 128975533213951976701
Offset: 1

Views

Author

Colin Barker, Jan 06 2015

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 7*y^2 - 5*x + 7*y = 0, the corresponding values of x being A133272.

Examples

			6 is in the sequence because the 6th centered heptagonal number is 106, which is also the 7th centered pentagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2)-5: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    RecurrenceTable[{a[1] == 1, a[2] == 6, a[n] == 12 a[n-1] - a[n-2] - 5}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
  • PARI
    Vec(-x*(x^2-7*x+1)/((x-1)*(x^2-12*x+1)) + O(x^100))
    

Formula

a(n) = 13*a(n-1)-13*a(n-2)+a(n-3).
G.f.: -x*(x^2-7*x+1) / ((x-1)*(x^2-12*x+1)).
a(n) = (14-(-7+sqrt(35))*(6+sqrt(35))^n+(6-sqrt(35))^n*(7+sqrt(35)))/28. - Colin Barker, Mar 05 2016
a(n) = 12*a(n-1) - a(n-2) - 5. - Vincenzo Librandi, Mar 05 2016
a(n) = (5*a(n-1) + a(n-1)^2) / a(n-2), n >= 3. - Seiichi Manyama, Aug 11 2016

A253622 Centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 106, 15016, 2132131, 302747551, 42988020076, 6103996103206, 866724458635141, 123068769130086781, 17474898492013687726, 2481312517096813570276, 352328902529255513291431, 50028222846637186073812891, 7103655315319951166968139056
Offset: 1

Views

Author

Colin Barker, Jan 06 2015

Keywords

Examples

			106 is in the sequence because it is the 6th centered heptagonal number and the 7th centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{143,-143,1},{1,106,15016},20] (* Harvey P. Dale, Feb 25 2016 *)
  • PARI
    Vec(-x*(x^2-37*x+1)/((x-1)*(x^2-142*x+1)) + O(x^100))

Formula

a(n) = 143*a(n-1)-143*a(n-2)+a(n-3).
G.f.: -x*(x^2-37*x+1) / ((x-1)*(x^2-142*x+1)).
a(n) = (4+(6+sqrt(35))*(71+12*sqrt(35))^(-n)-(-6+sqrt(35))*(71+12*sqrt(35))^n)/16. - Colin Barker, Mar 07 2016

A253654 Indices of pentagonal numbers (A000326) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 6, 46, 361, 2841, 22366, 176086, 1386321, 10914481, 85929526, 676521726, 5326244281, 41933432521, 330141215886, 2599196294566, 20463429140641, 161108236830561, 1268402465503846, 9986111487200206, 78620489432097801, 618977803969582201, 4873201942324559806
Offset: 1

Views

Author

Colin Barker, Jan 07 2015

Keywords

Comments

Also positive integers x in the solutions to 3*x^2-5*y^2-x+5*y-2 = 0, the corresponding values of y being A253470.

Examples

			6 is in the sequence because the 6th pentagonal number is 51, which is also the 5th centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9,-9,1},{1,6,46},30] (* Harvey P. Dale, Nov 12 2017 *)
  • PARI
    Vec(-x*(x^2-3*x+1)/((x-1)*(x^2-8*x+1)) + O(x^100))

Formula

a(n) = 9*a(n-1)-9*a(n-2)+a(n-3).
G.f.: -x*(x^2-3*x+1) / ((x-1)*(x^2-8*x+1)).
a(n) = (2-(-5+sqrt(15))*(4+sqrt(15))^n+(4-sqrt(15))^n*(5+sqrt(15)))/12. - Colin Barker, Mar 03 2016

A253921 Indices of octagonal numbers (A000567) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 51, 271, 24421, 130461, 11770711, 62881771, 5673458121, 30308883001, 2734595043451, 14608818724551, 1318069137485101, 7041420316350421, 635306589672775071, 3393949983662178211, 306216458153140098961, 1635876850704853547121, 147595697523223854923971
Offset: 1

Views

Author

Colin Barker, Jan 19 2015

Keywords

Comments

Also positive integers x in the solutions to 6*x^2 - 5*y^2 - 4*x + 5*y - 2 = 0, the corresponding values of y being A253922.

Examples

			51 is in the sequence because the 51st octagonal number is 7701, which is also the 56th centered pentagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,51,271,24421,130461]; [n le 5 select I[n] else Self(n-1)+482*Self(n-2)-482*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
  • Mathematica
    CoefficientList[Series[(x^4 + 50 x^3 - 262 x^2 + 50 x + 1)/((1 - x) (x^2 - 22 x + 1) (x^2 + 22 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
  • PARI
    Vec(-x*(x^4+50*x^3-262*x^2+50*x+1)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))
    

Formula

a(n) = a(n-1)+482*a(n-2)-482*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+50*x^3-262*x^2+50*x+1) / ((x-1)*(x^2-22*x+1)*(x^2+22*x+1)).

A253922 Indices of centered pentagonal numbers (A005891) which are also octagonal numbers (A000567).

Original entry on oeis.org

1, 56, 297, 26752, 142913, 12894168, 68883529, 6214961984, 33201717825, 2995598781880, 16003159107881, 1443872397903936, 7713489488280577, 695943500190915032, 3717885930192129993, 335443323219623141248, 1792013304863118375809, 161682985848358163166264
Offset: 1

Views

Author

Colin Barker, Jan 19 2015

Keywords

Comments

Also positive integers y in the solutions to 6*x^2 - 5*y^2 - 4*x + 5*y - 2 = 0, the corresponding values of x being A253921.

Examples

			56 is in the sequence because the 56th centered pentagonal is 7701, which is also the number 51st octagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,56,297,26752,142913]; [n le 5 select I[n] else Self(n-1)+482*Self(n-2)-482*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
  • Mathematica
    CoefficientList[Series[(55 x^3 + 241 x^2 - 55 x - 1)/((x - 1)(x^2 - 22 x + 1) (x^2 + 22 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
  • PARI
    Vec(x*(55*x^3+241*x^2-55*x-1)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))
    

Formula

a(n) = a(n-1)+482*a(n-2)-482*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(55*x^3+241*x^2-55*x-1) / ((x-1)*(x^2-22*x+1)*(x^2+22*x+1)).

A253923 Octagonal numbers (A000567) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 7701, 219781, 1789106881, 51059956641, 415648888795141, 11862351246525781, 96564381140875635681, 2755885166244302532001, 22434030154994860543881301, 640252753580346501593005701, 5211918753572151610134715970401, 148744800214537374776845967930881
Offset: 1

Views

Author

Colin Barker, Jan 19 2015

Keywords

Examples

			7701 is in the sequence because it is the 51st octagonal number and the 56th centered pentagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,7701,219781,1789106881,51059956641]; [n le 5 select I[n] else Self(n-1)+232322*Self(n-2)-232322*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
  • Mathematica
    CoefficientList[Series[(x^4 + 7700 x^3 - 20242 x^2 + 7700 x + 1) / ((1 - x) (x^2 - 482 x + 1) (x^2 + 482 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
  • PARI
    Vec(-x*(x^4+7700*x^3-20242*x^2+7700*x+1)/((x-1)*(x^2-482*x+1)*(x^2+482*x+1)) + O(x^100))
    

Formula

a(n) = a(n-1)+232322*a(n-2)-232322*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+7700*x^3-20242*x^2+7700*x+1) / ((x-1)*(x^2-482*x+1)*(x^2+482*x+1)).

A254626 Indices of triangular numbers (A000217) that are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 3, 23, 61, 421, 1103, 7563, 19801, 135721, 355323, 2435423, 6376021, 43701901, 114413063, 784198803, 2053059121, 14071876561, 36840651123, 252509579303, 661078661101, 4531100550901, 11862575248703, 81307300336923, 212865275815561, 1459000305513721
Offset: 1

Views

Author

Colin Barker, Feb 03 2015

Keywords

Comments

Also positive integers x in the solutions to x^2 - 5*y^2 + x + 5*y - 2 = 0, the corresponding values of y being A254627.

Examples

			3 is in the sequence because the 3rd triangular number is 6, which is also the 2nd centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,18,-18,-1,1},{1,3,23,61,421},30] (* Harvey P. Dale, Jun 15 2024 *)
  • PARI
    Vec(-x*(x+1)^2*(x^2+1)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^100))

Formula

a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(x+1)^2*(x^2+1) / ((x-1)*(x^2-4*x-1)*(x^2+4*x-1)).
a(n) = (-2 + (2-r)^n - (-2-r)^n*(-2+r) + 2*(-2+r)^n + r*(-2+r)^n + (2+r)^n)/4 where r = sqrt(5). - Colin Barker, Nov 25 2016

A254782 Indices of centered hexagonal numbers (A003215) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 11, 231, 5061, 111101, 2439151, 53550211, 1175665481, 25811090361, 566668322451, 12440892003551, 273132955755661, 5996484134620981, 131649518005905911, 2890292911995309051, 63454794545890893201, 1393115187097604341361, 30585079321601404616731
Offset: 1

Views

Author

Colin Barker, Feb 07 2015

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 6*y^2 - 5*x + 6*y = 0, the corresponding values of x being A133285.
The numbers (as opposed to the indices) are A133141.

Examples

			11 is in the sequence because the 11th centered hexagonal number is 331, which is also the 12th centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{23,-23,1},{1,11,231},20] (* Harvey P. Dale, Mar 01 2022 *)
  • PARI
    Vec(-x*(x^2-12*x+1)/((x-1)*(x^2-22*x+1)) + O(x^100))

Formula

a(n) = 23*a(n-1)-23*a(n-2)+a(n-3).
G.f.: -x*(x^2-12*x+1) / ((x-1)*(x^2-22*x+1)).
a(n) = 1/2+1/24*(11+2*sqrt(30))^(-n)*(6+sqrt(30)-(-6+sqrt(30))*(11+2*sqrt(30))^(2*n)). - Colin Barker, Mar 03 2016
Previous Showing 11-20 of 90 results. Next