A269064
At stage 1, start with a unit equilateral triangle. At each successive stage add 3*(n-1) new triangles around outside with vertex-to-vertex contacts. Sequence gives number of triangles at n-th stage.
Original entry on oeis.org
0, 1, 4, 10, 26, 48, 87, 135, 208, 293, 410, 542, 714, 904, 1141, 1399, 1712, 2049, 2448, 2874, 3370, 3896, 4499, 5135, 5856, 6613, 7462, 8350, 9338, 10368, 11505, 12687, 13984, 15329, 16796, 18314, 19962, 21664, 23503, 25399, 27440, 29541, 31794, 34110, 36586, 39128, 41837, 44615, 47568
Offset: 0
a(0)= 0, a(1) = 1, a(2) = 4, a(3) = 7+3 = 10, a(4) = 19 + 6 + 1 = 26, a(5) = 31 + 12 + 4 + 1 = 48.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luce ETIENNE, Illustration of initial terms
- Kival Ngaokrajang, Illustration of triangles expansion
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,2,-2,0,2,-1).
-
[(14*n^3-12*n^2+23*n+6+3*(3*n-2)*(-1)^n+2*((-1)^((2*n-1+(-1)^n) div 4)-(-1)^((6*n-1+(-1)^n) div 4)))/32: n in [0..50]]; // Vincenzo Librandi, Feb 19 2016
-
Table[(14 n^3 - 12 n^2 + 23 n + 6 + 3 (3 n - 2) (-1)^n + 2 ((-1)^((2*n - 1 + (-1)^n) / 4) - (-1)^((6 n - 1 + (-1)^n) / 4))) / 32, {n, 0, 45}] (* Vincenzo Librandi, Feb 19 2016 *)
-
concat(0, Vec(x*(1+2*x+2*x^2+8*x^3+2*x^4+5*x^5+x^6)/((1-x)^4*(1+x)^2*(1+x^2)) + O(x^50))) \\ Colin Barker, Feb 24 2016
A062135
Odd-numbered columns of Losanitsch triangle A034851 formatted as triangle with an additional first column.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 6, 3, 1, 0, 3, 10, 12, 4, 1, 0, 3, 19, 28, 20, 5, 1, 0, 4, 28, 66, 60, 30, 6, 1, 0, 4, 44, 126, 170, 110, 42, 7, 1, 0, 5, 60, 236, 396, 365, 182, 56, 8, 1, 0, 5, 85, 396, 868, 1001, 693, 280, 72, 9, 1
Offset: 0
Triangle begins:
{1};
{0,1};
{0,1,1};
{0,2,2,1};
...
Pe(4,x^2)=1+6*x^2+x^4.
-
t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2; Flatten[Table[t[n - 1 + m, n - m], {n, 0, 12}, {m, 0, n}]] (* Michael De Vlieger, Sep 28 2024, after Jean-François Alcover at A034851 *)
A137508
Successive structures of alkaline earth metals (periodic table elements from 2nd column).
Original entry on oeis.org
2, 2, 2, 8, 2, 2, 8, 8, 2, 2, 8, 18, 8, 2, 2, 8, 18, 18, 8, 2, 2, 8, 18, 32, 18, 8, 2
Offset: 1
27 terms: 2, 2 for beryllium, ... Every structure is palindromic (even and odd mixed). Also 2*A106314.
A141783
Number of bracelets (turn over necklaces) with n beads: 1 blue, 12 green, and r = n - 13 red.
Original entry on oeis.org
1, 7, 49, 231, 924, 3108, 9324, 25236, 63090, 147070, 323554, 676270, 1352540, 2600612, 4829708, 8692788, 15212379, 25949469, 43249115, 70562765, 112900424, 177412664, 274183208, 417232088, 625848132, 926250780, 1353751140
Offset: 13
-
A141783:=n->(1/2)*(binomial(n - 1, 12) + binomial((n - 2 + (n mod 2))/2, 6)); seq(A141783(n), n=13..50); # Wesley Ivan Hurt, Jan 30 2014
-
Table[(1/2) (Binomial[n - 1, 12] + Binomial[(n - 2 + Mod[n, 2])/2, 6]), {n, 13, 50}] (* Wesley Ivan Hurt, Jan 30 2014 *)
Revised by Washington Bomfim, Jul 24 2012
A212976
Number of (w,x,y) with all terms in {0,...,n} and odd range.
Original entry on oeis.org
0, 6, 12, 36, 60, 114, 168, 264, 360, 510, 660, 876, 1092, 1386, 1680, 2064, 2448, 2934, 3420, 4020, 4620, 5346, 6072, 6936, 7800, 8814, 9828, 11004, 12180, 13530, 14880, 16416, 17952, 19686, 21420, 23364, 25308, 27474, 29640, 32040
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Mod[Max[w, x, y] - Min[w, x, y], 2] == 1,
s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A212976 *)
m/6 (* A005993 except for initial 0 *)
LinearRecurrence[{2,1,-4,1,2,-1},{0,6,12,36,60,114},40] (* Harvey P. Dale, Jan 21 2017 *)
A362679
a(n) is the permanent of the n X n symmetric matrix M(n) defined by M[i, j, n] = min(i, j)*(n + 1) - i*j.
Original entry on oeis.org
1, 1, 5, 72, 2309, 140400, 14495641, 2347782144, 562385930985, 190398813728000, 87889475202276461, 53726132414026874880, 42454821207656237294381, 42495322215073539046387712, 52954624815227996007075890625, 80932107560443542398970529579008, 149736953621087625813286348913927569
Offset: 0
a(3) = 72:
[3, 2, 1]
M(3) = [2, 4, 2]
[1, 2, 3]
a(5) = 140400:
[5, 4, 3, 2, 1]
[4, 8, 6, 4, 2]
M(5) = [3, 6, 9, 6, 3]
[2, 4, 6, 8, 4]
[1, 2, 3, 4, 5]
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, Series 2, Vol. 6, 1957.
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](
Matrix(n, (i, j)-> min(i, j)*(n+1)-i*j))):
seq(a(n), n=0..16); # Alois P. Heinz, Apr 30 2023
-
M[i_, j_, n_]:=Min[i, j](n+1)-i j; Join[{1}, Table[Permanent[Table[M[i, j, n], {i, n}, {j, n}]], {n, 17}]]
-
a(n) = matpermanent(matrix(n, n, i, j, min(i, j)*(n + 1) - i*j)); \\ Michel Marcus, Apr 30 2023
A109622
Number of different isotemporal classes of diasters with n peripheral edges.
Original entry on oeis.org
1, 1, 4, 7, 15, 23, 38, 53, 77, 101, 136, 171, 219, 267, 330, 393, 473, 553, 652, 751, 871, 991, 1134, 1277, 1445, 1613, 1808, 2003, 2227, 2451, 2706, 2961, 3249, 3537, 3860, 4183, 4543, 4903, 5302, 5701, 6141, 6581, 7064, 7547, 8075, 8603
Offset: 0
Benjamin de Bivort (bivort(AT)fas.harvard.edu), Aug 02 2005
A diaster is defined to be any graph with a central edge with vertices of degree j and k and j+k peripheral edges connected to the central edge each terminating in a vertex of degree 1. a(5)=23 refers to diasters with 5 peripheral edges. These can be uniquely arranged with 0, 1 or 2 peripheral edges on a particular side, yielding 1, 10 and 12 isotemporal classes respectively each.
- Benjamin de Bivort, Isotemporal classes of diasters, beachballs and daisies, preprint, 2005.
A115263
Correlation triangle for floor((n+2)/2).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 4, 6, 4, 3, 3, 5, 7, 7, 5, 3, 4, 6, 10, 10, 10, 6, 4, 4, 7, 11, 13, 13, 11, 7, 4, 5, 8, 14, 16, 19, 16, 14, 8, 5, 5, 9, 15, 19, 22, 22, 19, 15, 9, 5, 6, 10, 18, 22, 28, 28, 28, 22, 18, 10, 6
Offset: 0
Triangle begins
1;
1,1;
2,2,2;
2,3,3,2;
3,4,6,4,3;
3,5,7,7,5,3;
A136451
Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n matrix: 2 on the main antidiagonal, -1 on the adjacent sub-antidiagonals and 0 otherwise.
Original entry on oeis.org
1, 2, -1, -3, 2, 1, -4, 6, 2, -1, 5, -10, -9, 2, 1, 6, -19, -16, 12, 2, -1, -7, 28, 42, -22, -15, 2, 1, -8, 44, 68, -74, -28, 18, 2, -1, 9, -60, -138, 126, 115, -34, -21, 2, 1, 10, -85, -208, 316, 202, -165, -40, 24, 2, -1, -11, 110, 363, -506, -605, 296, 224, -46, -27, 2, 1
Offset: 0
1;
2, -1;
-3,2, 1;
-4, 6, 2, -1;
5, -10, -9, 2, 1;
6, -19, -16, 12, 2, -1;
-7,28, 42, -22, -15, 2, 1;
-8, 44, 68, -74, -28,18, 2, -1;
9, -60, -138, 126, 115, -34, -21, 2, 1;
10, -85, -208,316, 202, -165, -40, 24, 2, -1;
-11, 110, 363, -506, -605, 296, 224, -46, -27, 2, 1;
-
A136451x := proc(n,x)
local A,r,c ;
A := Matrix(1..n,1..n) ;
for r from 1 to n do
for c from 1 to n do
A[r,c] :=0 ;
if r+c = 1+n then
A[r,c] := A[r,c]+2 ;
elif abs(r+c-1-n)= 1 then
A[r,c] := A[r,c]-1 ;
end if;
end do:
end do:
(-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ;
end proc;
A136451 := proc(n,k)
coeftayl( A136451x(n,x),x=0,k) ;
end proc:
seq(seq(A136451(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 04 2011
-
H[n_] := Table[Table[If[i + j - 1 == n, 2,If[i + j - 1 == n + 1, -1, If[i + j - 1 == n - 1, -1, 0]]], {i, 1, n}], {j, 1, n}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[H[n], x], x], {n, 1, 10}]]; Flatten[a']
A177878
Triangle in which row n is generated from (1,2,3,...,n) dot (n, n-1,...,1) with subtractive carryovers.
Original entry on oeis.org
1, 2, 0, 3, 1, 2, 4, 2, 4, 0, 5, 3, 6, 2, 3, 6, 4, 8, 4, 6, 0, 7, 5, 10, 6, 9, 3, 4, 8, 6, 12, 8, 12, 6, 8, 0, 9, 7, 14, 10, 15, 9, 12, 4, 5, 10, 8, 16, 12, 18, 12, 16, 8, 10, 0, 11, 9, 18, 14, 21, 15, 20, 12, 15, 5, 6, 12, 10, 20, 16, 24, 18, 24, 16, 20, 10, 12, 0
Offset: 0
Row 3 = (4, 2, 4, 0) = (1, 2, 3, 4) dot (4, 3, 2, 1) with subtractive carryovers = (4), then (2*3 - 4 = 2), (3*2 - 2 = 4), and (4*1 - 4 = 0).
First few rows of the triangle:
1;
2, 0;
3, 1, 2;
4, 2, 4, 0;
5, 3, 6, 2, 3;
6, 4, 8, 4, 6, 0;
7, 5, 10, 6, 9, 3, 4;
8, 6, 12, 8, 12, 6, 8, 0;
9, 7, 14, 10, 15, 9, 12, 4, 5;
10, 8, 16, 12, 18, 12, 16, 8, 10, 0;
11, 9, 18, 14, 21, 15, 20, 12, 15, 5, 6;
12, 10, 20, 16, 24, 18, 24, 16, 20, 10, 12, 0;
...
Comments