cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 137 results. Next

A286785 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 5, 2, 14, 14, 2, 42, 72, 27, 2, 132, 330, 220, 44, 2, 429, 1430, 1430, 520, 65, 2, 1430, 6006, 8190, 4550, 1050, 90, 2, 4862, 24752, 43316, 33320, 11900, 1904, 119, 2, 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2, 58786, 406980, 1046520, 1302336, 854658, 301644, 55860, 5040, 189, 2, 208012, 1634380, 4903140, 7354710, 6056820, 2826516, 743820, 106260, 7590, 230, 2
Offset: 0

Views

Author

Gheorghe Coserea, May 15 2017

Keywords

Comments

Row n>0 contains n terms.
T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the GW approximation of the polarization function in a many-body theory of fermions with two-body interaction (see Molinari link).

Examples

			A(x;t) = 1 + 2*x + (5 + 2*t)*x^2 + (14 + 14*t + 2*t^2)*x^3 + ...
Triangle starts:
   n\k |     0       1       2       3       4      5     6    7  8
  -----+-----------------------------------------------------------
   0   |     1;
   1   |     2;
   2   |     5,      2;
   3   |    14,     14,      2;
   4   |    42,     72,     27,      2;
   5   |   132,    330,    220,     44,      2;
   6   |   429,   1430,   1430,    520,     65,     2;
   7   |  1430,   6006,   8190,   4550,   1050,    90,    2;
   8   |  4862,  24752,  43316,  33320,  11900,  1904,  119,   2;
   9   | 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2;
		

Crossrefs

Programs

  • Maxima
    T(n,k):=(binomial(n-1,k)*binomial(2*(n+1),n-k))/(n+1); /* Vladimir Kruchinin, Jan 14 2022 */
  • PARI
    A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x;
    A286785_ser(N,t='t) = 1/(1-x*A286784_ser(N,t))^2;
    concat(apply(p->Vecrev(p), Vec(A286785_ser(12))))
    

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n = 1/(1-x*s)^2, where s(x;t) = A286784(x;t) and P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0.
A000108(n+1) = T(n,0), A002058(n+3) = T(n,1), A014106(n-1) = T(n,n-2), A006013(n) = P_n(1), A211789(n+1) = P_n(2).
T(n,k) = C(n-1,k)*C(2*n+2,n-k)/(n+1). - Vladimir Kruchinin, Jan 14 2022

A111160 G.f.: C - Z; where C is the g.f. for the Catalan numbers (A000108) and Z is the g.f. for A055113 with offset 0.

Original entry on oeis.org

0, 1, 1, 4, 9, 31, 91, 309, 1009, 3481, 11956, 42065, 148655, 532039, 1915369, 6950452, 25357233, 93034813, 342888250, 1269246437, 4715945712, 17583623988, 65766726906, 246694006971, 927801717255, 3497918129001, 13217196871126, 50046561077947
Offset: 0

Views

Author

N. J. A. Sloane, Oct 22 2005

Keywords

Comments

Expressible in terms of ballot numbers.
Number of positive walks with n steps {-2,-1,1,2} starting at the origin, ending at altitude 2, and staying strictly above the x-axis. - David Nguyen, Dec 16 2016

Crossrefs

Programs

  • Magma
    I:=[1,1,4]; [0] cat [n le 3 select I[n] else (n*(115*n^3 - 344*n^2 + 299*n - 82)*Self(n-1) + 4*(2*n-3)*(5*n^3 + 27*n^2 - 74*n + 30)*Self(n-2) - 36*(n-2)*(2*n-5)*(2*n-3)*(5*n-3)*Self(n-3))/(2*n*(n+1)*(2*n+1)*(5*n-8)): n in [1..30]]; // Vincenzo Librandi, Oct 06 2015
  • Maple
    a := n -> (-1)^(n+1)*binomial(2*n+1,n)*hypergeom([-n-1,n/2+1/2,n/2],[n,n+1],4)/ (2*n+1);
    [0, op([seq(round(evalf(a(n),32)), n=1..27)])]; # Peter Luschny, Oct 06 2015
  • Mathematica
    CoefficientList[ Series[ -((-3 + Sqrt[1 - 4*x] + Sqrt[2]*Sqrt[1 + Sqrt[1 - 4x] + 6x])/(4x)), {x, 0, 10}], x] (* Robert G. Wilson v *)
  • PARI
    a(n) = if(n==0, 0, sum(k=0, (n+1)/2, binomial(n-k,n-2*k+1)*binomial(2*n+1,k))/(2*n+1)); \\ Altug Alkan, Oct 05 2015
    

Formula

Let C := (1 - sqrt(1 - 4*x)) / (2*x), Z := (- 1/4 - (1/4)*(1 - 4*x)^(1/2) + (1/4)*(2 + 2*(1 - 4*x)^(1/2) + 12*x)^(1/2))/x; g.f. is W := C - Z.
G.f.: -((-3 + sqrt(1 - 4x) + sqrt(2)*sqrt(1 + sqrt(1 - 4x) + 6x))/(4x)).
a(n) = sum(j=0..n+1, binomial(n+2*j-1,j)*(-1)^(n+j+1)*binomial(2*n+1,j+n))/(2*n+1). [Vladimir Kruchinin, Feb 15 2013]
a(n) ~ (1+1/sqrt(5))*2^(2*n-1)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
Recurrence: 2*n*(n+1)*(2*n+1)*(5*n-8)*a(n) = n*(115*n^3 - 344*n^2 + 299*n - 82)*a(n-1) + 4*(2*n-3)*(5*n^3 + 27*n^2 - 74*n + 30)*a(n-2) - 36*(n-2)*(2*n-5)*(2*n-3)*(5*n-3)*a(n-3). - Vaclav Kotesovec, Aug 13 2013
a(n) = Sum_{j=0..(n+1)/2}(binomial(n-j,n-2*j+1)*binomial(2*n+1,j))/(2*n+1). - Vladimir Kruchinin, Oct 05 2015
a(n) = (-1)^(n+1)*C(2*n+1,n)*hypergeom([-n-1,n/2+1/2,n/2],[n,n+1],4)/(2*n+1) for n>0. - Peter Luschny, Oct 06 2015

A126042 Expansion of f(x^3)/(1-x*f(x^3)), where f(x) is the g.f. of A001764, whose n-th term is binomial(3n,n)/(2n+1).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 8, 13, 19, 38, 64, 98, 196, 337, 531, 1062, 1851, 2974, 5948, 10468, 17060, 34120, 60488, 99658, 199316, 355369, 590563, 1181126, 2115577, 3540464, 7080928, 12731141, 21430267, 42860534, 77306428, 130771376, 261542752, 473018396, 803538100
Offset: 0

Views

Author

Paul Barry, Dec 16 2006

Keywords

Comments

Row sums of number triangle A111373.
Interleaves T(3n,2n), T(3n+1,2n+1) and T(3n+2,2n+2) for T(n,k) = A047089(n,k).
One step forward and two steps back: number of nonnegative walks of n steps where the steps are size 1 forwards and size 2 backwards. - David Scambler, Mar 15 2011
Brown's criterion ensures that the sequence is complete (see formulae). - Vladimir M. Zarubin, Aug 05 2019
Number of ordered trees with n+1 edges, having nonroot nodes of outdegree 0 or 3. - Emanuele Munarini, Jun 20 2024

Crossrefs

Programs

  • Magma
    [n lt 3 select 1 else Binomial(n, Floor(n/3)) - (&+[Binomial(n,j): j in [0..Floor(n/3)-1]]): n in [0..40]]; // G. C. Greubel, Jul 30 2022
    
  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$3, 2][n+1], (a(n-1)*
           2*(20*n^4-14*n^3-31*n^2-n+8)-6*(3*n-1)*(5*n-6)*a(n-2)
          +9*(n-2)*(15*n^3-48*n^2+15*n+14)*a(n-3)-54*(n-2)*(n-3)*
          (5*n^2-n-2)*a(n-4))/(2*(2*n+1)*(n+1)*(5*n^2-11*n+4)))
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Sep 07 2022
  • Mathematica
    Table[Binomial[n, Floor[n/3]] -Sum[Binomial[n,i], {i,0,Floor[n/3] -1}], {n,0,40}] (* David Callan, Oct 26 2017 *)
    a[n_] := Binomial[n, Floor[n/3]] (1 + Hypergeometric2F1[1, -n + Floor[n/3], 1 + Floor[n/3], -1]) - 2^n; Table[a[n], {n, 0, 38}] (* Peter Luschny, Jun 20 2024 *)
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x*(1+x)^2/((1+x)^3+x^3+x*O(x^n))),n)}
    
  • PARI
    n=30;
    {a0=1;a1=1;a2=1;for(k=1, n/3,print1(a0,", ",a1,", ",a2,", ");
    a0=2*a2;a1=2*a0-binomial(3*k,k)/(2*k+1);a2=2*a1-binomial(3*k+1,k)/(k+1))
    } \\ Vladimir M. Zarubin, Aug 05 2019
    
  • SageMath
    [binomial(n, (n//3)) - sum(binomial(n,j) for j in (0..(n//3)-1)) for n in (0..40)] # G. C. Greubel, Jul 30 2022

Formula

a(n) = Sum_{k=0..n} binomial(3*floor((n+2k)/3) - 2k, floor((n+2k)/3)-k)*(k+1)/(2*floor((n+2k)/3) - k + 1)(2*cos(2*Pi*(n-k)/3) + 1)/3.
G.f.: (1/x)*Series_Reversion( x*(1+x)^2/((1+x)^3+x^3) ). - Paul D. Hanna, Mar 15 2011
From Vladimir M. Zarubin, Aug 05 2019: (Start)
a(0) = 1, a(1) = 1, a(2) = 1 and for k>0
a(3*k) = 2*a(3*k-1),
a(3*k+1) = 2*a(3*k) - binomial(3*k,k)/(2*k+1),
a(3*k+2) = 2*a(3*k+1) - binomial(3*k+1,k)/(k+1),
where binomial(3*k,k)/(2*k+1) = A001764(k)
and binomial(3*k+1,k)/(k+1) = A006013(k). (End)
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (n-3*k+1) * binomial(n+1,k). - Seiichi Manyama, Jan 27 2024

A329058 2-parking triangle T(r, i, 2) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 2 and 0 <= i <= r.

Original entry on oeis.org

1, 2, 1, 7, 6, 3, 30, 36, 32, 16, 143, 220, 275, 250, 125, 728, 1365, 2184, 2808, 2592, 1296, 3876, 8568, 16660, 27440, 36015, 33614, 16807, 21318, 54264, 124032, 248064, 417792, 557056, 524288, 262144, 120175, 346104, 908523, 2133054, 4363065, 7479540, 10097379, 9565938, 4782969
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2019

Keywords

Comments

The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip).

Examples

			r/i|   0   1   2   3   4
————————————————————————
0  |   1
1  |   2   1
2  |   7   6   3
3  |  30  36  32  16
4  | 143 220 275 250 125
		

Crossrefs

Programs

  • Mathematica
    T[r_, i_,k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r,i,2],{r,0,9},{i,0,r}]]

Formula

T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i).
T(r, 0, 2) = A006013(r).
T(r, r, 2) = A000272(r + 1).

A361306 Expansion of A(x) satisfying A(x) = x + A(x)^2*(1 + A(x))^4.

Original entry on oeis.org

1, 1, 6, 31, 186, 1191, 7972, 55164, 391322, 2830751, 20801826, 154853413, 1165316224, 8850372878, 67750780816, 522218420336, 4049564739054, 31570368061361, 247293510244174, 1945331619223591, 15361731119713506, 121729460653957980, 967664450692965300
Offset: 1

Views

Author

Paul D. Hanna, Mar 08 2023

Keywords

Examples

			G.f.: A(x) = x + x^2 + 6*x^3 + 31*x^4 + 186*x^5 + 1191*x^6 + 7972*x^7 + 55164*x^8 + 391322*x^9 + ...
such that sqrt(A(x) - x) = A(x)*(1 + A(x))^2.
A(x)*(1 + A(x))^2 = x + 3*x^2 + 11*x^3 + 60*x^4 + 355*x^5 + 2261*x^6 + 15094*x^7 + 104208*x^8 + ...
A(x)*(1 + A(x))^2 = Series_Reversion( -x^2 + Sum_{n>=1} (-1)^(n-1) * binomial(3*n-2,n-1)*x^n/n ).
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(serreverse(x - x^2*(1+x)^4 +x*O(x^n)), n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^(2*m)*(1+x+x*O(x^n))^(4*m)/m!)); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*(1+x+x*O(x^n))^(4*m)/m!))); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following.
(1) A(x) = Series_Reversion( x - x^2*(1+x)^4 ).
(2) A(x) = x + A(x)^2 * (1 + A(x))^4.
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n) * (1+x)^(4*n) / n!.
(4) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * (1+x)^(4*n) / n! ).
(5) A(x) = x + Series_Reversion( Series_Reversion( x*(1+x)^2 ) - x^2 )^2.
(6) A(x) = x + Series_Reversion( -x^2 + Sum_{n>=1} (-1)^(n-1) * binomial(3*n-2,n-1) * x^n/n )^2.
From Vaclav Kotesovec, Mar 09 2023: (Start)
Recurrence: 3381*(n-4)*(n-3)*(n-2)*(n-1)*n*(4485934293448*n^5 - 88905588075732*n^4 + 698950092208066*n^3 - 2724285958475163*n^2 + 5263801532363671*n - 4032831805999290)*a(n) = 2*(n-4)*(n-3)*(n-2)*(n-1)*(33204885640102096*n^6 - 707886491396721408*n^5 + 6160367858867908768*n^4 - 27918165429184721124*n^3 + 69150795811214975011*n^2 - 88077097294043237943*n + 44480953779348451050)*a(n-1) + 8*(n-4)*(n-3)*(n-2)*(52772531028122272*n^7 - 1256975462235400336*n^6 + 12611049851568548176*n^5 - 69004162305753446968*n^4 + 222104765912229832762*n^3 - 419924105934755620321*n^2 + 431120275047208552290*n - 185089750933520270250)*a(n-2) + 48*(n-4)*(n-3)*(17647665510424432*n^8 - 482112074818112928*n^7 + 5693971809001104840*n^6 - 37956706633792772384*n^5 + 156126872715173363823*n^4 - 405548028261835673882*n^3 + 649232078072133939050*n^2 - 585187986606994739801*n + 227161430445970883100)*a(n-3) + 32*(n-4)*(21945190563547616*n^9 - 698268423629052336*n^8 + 9788485232517982416*n^7 - 79313303231764021176*n^6 + 409187506797434806734*n^5 - 1393249646753024170299*n^4 + 3129189249705937191544*n^3 - 4467594298222926610959*n^2 + 3676695031470911619960*n - 1327813620065788842000)*a(n-4) + 72*(2*n - 7)*(3*n - 14)*(3*n - 13)*(6*n - 31)*(6*n - 29)*(4485934293448*n^5 - 66475916608492*n^4 + 388187082839618*n^3 - 1116009867370877*n^2 + 1578887211201855*n - 878785793685000)*a(n-5).
a(n) ~ 1/(2 * (1 + s) * sqrt(Pi*(1 + 10*s + 15*s^2)) * n^(3/2) * r^(n - 1/2)), where r = 0.1176087332021218420455915375218722861407778043565... and s = 0.1894485384658193296593809633217117092941452563863... are real roots of the system of equations r + s^2 * (1+s)^4 = s, 2*s*(1+s)^3 * (1+3*s) = 1. (End)
a(n+1) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(4*k,n-k)/(n+k+1). - Seiichi Manyama, Aug 24 2023

A366326 G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^2).

Original entry on oeis.org

1, 2, -3, 14, -78, 479, -3131, 21372, -150588, 1087057, -7998295, 59763129, -452257495, 3459109408, -26697940390, 207672518808, -1626400971710, 12813379464399, -101482102525511, 807524595076284, -6452856224076654, 51760509258982478, -416620859045829372
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(n+k-2, n-k)/(3*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(3*k-1,k) * binomial(n+k-2,n-k)/(3*k-1).

A369616 Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^2 + x) ).

Original entry on oeis.org

1, 3, 12, 58, 314, 1824, 11107, 69955, 451918, 2977834, 19936332, 135225006, 927267595, 6417580459, 44770275705, 314489676679, 2222549047262, 15791353483602, 112734135824404, 808247711066688, 5817056710700424, 42012120642574732, 304384379305912686
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2024

Keywords

Crossrefs

Programs

  • Maple
    A369616 := proc(n)
        add(binomial(n+1,k) * binomial(3*n-3*k+1,n-k),k=0..n) ;
        %/(n+1) ;
    end proc;
    seq(A369616(n),n=0..70) ; # R. J. Mathar, Jan 28 2024
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^2+x))/x)
    
  • PARI
    a(n) = sum(k=0, n, binomial(n+1, k)*binomial(3*n-3*k+1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+1,k) * binomial(3*n-3*k+1,n-k).
D-finite with recurrence 2*(n+1)*(2*n+1)*a(n) +3*(-13*n^2+1)*a(n-1) +33*(2*n-1)*(n-1)*a(n-2) -31*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Jan 28 2024

A370474 G.f. A(x) satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(3/2)).

Original entry on oeis.org

1, 2, 9, 54, 372, 2778, 21873, 178786, 1502649, 12904524, 112741664, 998871030, 8953443276, 81047485148, 739846170864, 6803054508702, 62954736555836, 585850907166084, 5479077065774682, 51470699845616004, 485456696541512442, 4595280949098247422
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+3*k/2+1, n)/(3*n/2+3*k/2+1));
    
  • PARI
    a(n, r=2, s=-1, t=5, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 12 2024

Formula

a(n) = Sum{k=0..n} binomial(n,k) * binomial(3*n/2+3*k/2+1,n)/(3*n/2+3*k/2+1).
From Seiichi Manyama, Dec 12 2024: (Start)
G.f. A(x) satisfies:
(1) A(x) = ( 1 + x*A(x)^(5/2)/(1 + x*A(x)^(3/2)) )^2.
(2) A(x) = 1/( 1 - x*A(x)^2/(1 + x*A(x)^(3/2)) )^2.
(3) A(x) = B(x)^2 where B(x) is the g.f. of A271469.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r). (End)

A371494 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^2.

Original entry on oeis.org

1, 2, 5, 18, 72, 310, 1399, 6532, 31287, 152876, 759034, 3818410, 19420713, 99697784, 515909606, 2688267462, 14093211259, 74281217492, 393389969722, 2092312452404, 11171325560120, 59854910468196, 321717833732186, 1734250394445622, 9373581927760595
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(3*k+1, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(3*k+1,k)/(k+1).

A377503 E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x))^2.

Original entry on oeis.org

1, 2, 18, 270, 5936, 173330, 6335772, 278724362, 14350790064, 847007698338, 56397332340020, 4182866692785242, 342022887565717800, 30570009715185100082, 2965368922693150575084, 310276298423966343555690, 34834957115496822249510752, 4177193847524372747798263106
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(3*k+1, k)/((k+1)*(n-k)!));

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A364983.
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(3*k+1,k)/( (k+1)*(n-k)! ).
Previous Showing 51-60 of 137 results. Next