cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 71 results. Next

A006048 Number of entries in first n rows of Pascal's triangle not divisible by 3.

Original entry on oeis.org

1, 3, 6, 8, 12, 18, 21, 27, 36, 38, 42, 48, 52, 60, 72, 78, 90, 108, 111, 117, 126, 132, 144, 162, 171, 189, 216, 218, 222, 228, 232, 240, 252, 258, 270, 288, 292, 300, 312, 320, 336, 360, 372, 396, 432, 438, 450, 468, 480, 504, 540, 558, 594, 648, 651, 657, 666, 672, 684, 702, 711, 729, 756, 762, 774, 792, 804, 828, 864, 882, 918, 972, 981, 999, 1026, 1044, 1080, 1134, 1161, 1215, 1296
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A006047.

Programs

  • Python
    from math import prod
    from gmpy2 import digits
    def A006048(n): return sum(prod(int(d)+1 for d in digits(m,3)) for m in range(n+1)) # Chai Wah Wu, Aug 10 2025
    
  • Python
    from math import prod
    from gmpy2 import digits
    def A006048(n):
        d = list(map(lambda x:int(x)+1,digits(n+1,3)[::-1]))
        return sum((b-1)*prod(d[a:])*6**a for a, b in enumerate(d))>>1  # Chai Wah Wu, Aug 13 2025

Extensions

More terms from N. J. A. Sloane, Apr 23 2025

A130667 a(1) = 1; a(n) = max{ 5*a(k) + a(n-k) | 1 <= k <= n/2 } for n > 1.

Original entry on oeis.org

1, 6, 11, 36, 41, 66, 91, 216, 221, 246, 271, 396, 421, 546, 671, 1296, 1301, 1326, 1351, 1476, 1501, 1626, 1751, 2376, 2401, 2526, 2651, 3276, 3401, 4026, 4651, 7776, 7781, 7806, 7831, 7956, 7981, 8106, 8231, 8856, 8881, 9006, 9131, 9756, 9881, 10506, 11131
Offset: 1

Views

Author

N. J. A. Sloane, based on a message from Don Knuth, Jun 23 2007

Keywords

Comments

From Gary W. Adamson, Aug 27 2016: (Start)
The formula of Mar 26 2010 is equivalent to the following: Given the production matrix M below, lim_{k->infinity} M^k as a left-shifted vector generates the sequence.
1, 0, 0, 0, 0, ...
6, 0, 0, 0, 0, ...
5, 1, 0, 0, 0, ...
0, 6, 0, 0, 0, ...
0, 5, 1, 0, 0, ...
0, 0, 6, 0, 0, ...
0, 0, 5, 1, 0, ...
...
The sequence divided by its aerated variant is (1, 6, 5, 0, 0, 0, ...). (End)

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a130667 n = a130667_list !! (n-1)
    a130667_list = 1 : (concat $ transpose
       [zipWith (+) vs a130667_list, zipWith (+) vs $ tail a130667_list])
       where vs = map (* 5) a130667_list
    -- Reinhard Zumkeller, Apr 18 2012
    
  • Magma
    [&+[5^(2*k - Valuation(Factorial(2*k), 2)): k in [0..n]]: n in [0..50]]; // Vincenzo Librandi, Mar 15 2019
  • Maple
    a:= proc(n) option remember;
          `if`(n=1, 1, `if`(irem(n, 2, 'm')=0, 6*a(m), 5*a(m)+a(n-m)))
        end:
    seq(a(n), n=1..70); # Alois P. Heinz, Apr 09 2012
  • Mathematica
    a[1]=1; a[n_] := a[n] = If[EvenQ[n], 6a[n/2], 5a[(n-1)/2]+a[(n+1)/2]]; Array[a, 50] (* Jean-François Alcover, Feb 13 2015 *)
  • PARI
    first(n)=my(v=vector(n),r,t); v[1]=1; for(i=2,n, r=0; for(k=1,i\2, t=5*v[k]+v[i-k]; if(t>r, r=t)); v[i]=r); v \\ Charles R Greathouse IV, Aug 29 2016
    

Formula

a(2*n) = 6*a(n) and a(2*n+1) = 5*a(n) + a(n+1).
Let r(x) = (1 + 6*x + 5*x^2). Then (1 + 6*x + 11*x^2 + 36*x^3 + ...) = r(x) * r(x^2) * r(x^4) * r(x^8) * ... - Gary W. Adamson, Mar 26 2010
a(n) = Sum_{k=0..n} 5^wt(k), where wt = A000120. - Mike Warburton, Mar 14 2019
a(n) = Sum_{k=0..floor(log_2(n))} 5^k*A360189(n-1,k). - Alois P. Heinz, Mar 06 2023

A073121 a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)) with a(1)=1 and (r,s)=(2,2).

Original entry on oeis.org

1, 4, 10, 16, 28, 40, 52, 64, 88, 112, 136, 160, 184, 208, 232, 256, 304, 352, 400, 448, 496, 544, 592, 640, 688, 736, 784, 832, 880, 928, 976, 1024, 1120, 1216, 1312, 1408, 1504, 1600, 1696, 1792, 1888, 1984, 2080, 2176, 2272, 2368, 2464, 2560, 2656, 2752
Offset: 1

Views

Author

Jeffrey Shallit, Aug 25 2002

Keywords

Comments

A recurrence occurring in the analysis of a regular expression algorithm.

Examples

			a(1)=1, a(2) = 2*(a(1)+a(1)) = 4, a(3) = 2*(a(2)+a(1)) = 10.
		

References

  • K. Ellul, J. Shallit and M.-w. Wang, Regular expressions: new results and open problems, in Descriptional Complexity of Formal Systems (DCFS), Proceedings of workshop, London, Ontario, Canada, 21-24 August 2002, pp. 17-34.

Crossrefs

Sequences of form a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Haskell
    a073121 n = a053644 n * (fromIntegral n + 2 * a053645 n)
    -- Reinhard Zumkeller, Mar 23 2012
    
  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          2*((m-> a(m)+a(n-m))(iquo(n, 2))))
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, Feb 01 2015
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1, 2*(a[Quotient[n, 2]] + a[n - Quotient[n, 2]])]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
    a[ n_] := If[ n < 1, 0, Module[{m = 1, A = 1}, While[m < n, m *= 2; A = (Normal[A] /. x -> x^2) 2 (1 + x)^2 - 1 + O[x]^m]; Coefficient[A, x, n - 1]]]; (* Michael Somos, Jul 04 2017 *)
  • PARI
    {a(n) = n--; if( n<0, 0, my(m=1, A = 1 + O(x)); while(m<=n, m*=2; A = subst(A, x, x^2) * 2 * (1 + x)^2 - 1); polcoeff(A, n))}; /* Michael Somos, Jul 04 2017 */

Formula

a(n) = 2*(a(floor(n/2)) + a(ceiling(n/2))) for n >= 2; alternatively, a(n) = 2^c(n+2b) where n = 2^c + b, 0 <= b < 2^c.
a(n) == 1 (mod 3), a(n+1)-a(n) = 3*A053644(n). If k >= 1: a(2^k)=4^k, a(3*2^k)=(10/9)*4^k. More generally a(m*2^k) = a(m)*4^k. Hence for any n, n^2 <= a(n) <= C*n^2 where C is a constant 1.125 < C < 1.14 and it seems that C = lim_{k->infinity} a(A001045(k))/A001045(k)^2 where A001045(k) =(2^n - (-1)^n)/3 is the Jacobsthal sequence. In other words, in the range 2^k <= n <= 2^(k+1) the maximum of a(n)/n^2 is reached for the only possible n in the Jacobsthal sequence. - Benoit Cloitre, Aug 26 2002
For any n, n^2 <= a(n) <= 9/8 * n^2. - Arnoud van der Leer, Sep 01 2019
a(n) = 2*(a(floor(n/2)) + a(ceiling(n/2))) for n >= 2; alternatively, a(n) = 2^c(n+2b) where n = 2^c + b, 0 <= b < 2^c
G.f.: 3*x/(1-x)^2 * ((2*x+1)/3 + Sum_{k>=1} 2^(k-1)*x^2^k). - Ralf Stephan, Apr 18 2003
G.f.: A(x) = 2 * (1/x + 2 + x) * A(x^2) - x. - Michael Somos, Jul 04 2017

Extensions

Edited by N. J. A. Sloane, Feb 16 2016

A194458 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 5.

Original entry on oeis.org

1, 3, 6, 10, 15, 17, 21, 27, 35, 45, 48, 54, 63, 75, 90, 94, 102, 114, 130, 150, 155, 165, 180, 200, 225, 227, 231, 237, 245, 255, 259, 267, 279, 295, 315, 321, 333, 351, 375, 405, 413, 429, 453, 485, 525, 535, 555, 585, 625, 675, 678, 684, 693, 705, 720, 726
Offset: 0

Views

Author

Paul Weisenhorn, Aug 24 2011

Keywords

Comments

The number of zeros in the first n rows is binomial(n+1,2) - a(n).

Examples

			n = 38: n+1 = 39 = 124_5, thus a(38) = (C(5,2)*15^0*3 + C(3,2)*15^1)*2 + C(2,2)*15^2 = (10*1*3 + 3*15)*2 + 1*225 = 375.
		

Crossrefs

A006046(n+1) = A006046(n) + A001316(n) for p=2.
A006048(n+1) = A006048(n) + A006047(n+1) for p=3.
a(n+1) = a(n) + A194459(n+1) for p=5.

Programs

  • Maple
    a:= proc(n) local l, m, h, j;
          m:= n+1;
          l:= [];
          while m>0 do l:= [l[], irem (m, 5, 'm')+1] od;
          h:= 0;
          for j to nops(l) do h:= h*l[j] +binomial (l[j], 2) *15^(j-1) od:
          h
        end:
    seq(a(n), n=0..100);
  • Mathematica
    a[n_] := Module[{l, m, r, h, j}, m = n+1; l = {}; While[m>0, l = Append[l, {m, r} = QuotientRemainder[m, 5]; r+1]]; h = 0; For[j = 1, j <= Length[l], j++, h = h*l[[j]] + Binomial [l[[j]], 2] *15^(j-1)]; h]; Table [a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 26 2017, translated from Maple *)
  • Python
    from math import prod
    from gmpy2 import digits
    def A194458(n): return sum(prod(int(d)+1 for d in digits(m,5)) for m in range(n+1)) # Chai Wah Wu, Aug 10 2025
    
  • Python
    from math import prod
    from gmpy2 import digits
    def A194458(n):
        d = list(map(lambda x:int(x)+1,digits(n+1,5)[::-1]))
        return sum((b-1)*prod(d[a:])*15**a for a, b in enumerate(d))>>1 # Chai Wah Wu, Aug 13 2025

Formula

a(n) = ((C(d0+1,2)*15^0*(d1+1) + C(d1+1,2)*15^1)*(d1+1) + C(d1+1,2)*15^1)*(d2+1) + C(d2+1,2)*15^2 ..., where d_k...d_1d_0 is the base 5 expansion of n+1 and 15 = binomial(5+1,2). The formula generalizes to other prime bases p.

Extensions

Edited by Alois P. Heinz, Sep 06 2011

A161342 Number of "ON" cubic cells at n-th stage in simple 3-dimensional cellular automaton: a(n) = A160428(n)/8.

Original entry on oeis.org

0, 1, 8, 15, 64, 71, 120, 169, 512, 519, 568, 617, 960, 1009, 1352, 1695, 4096, 4103, 4152, 4201, 4544, 4593, 4936, 5279, 7680, 7729, 8072, 8415, 10816, 11159, 13560, 15961, 32768, 32775, 32824, 32873, 33216, 33265, 33608, 33951, 36352, 36401, 36744, 37087, 39488
Offset: 0

Views

Author

Omar E. Pol, Jun 14 2009

Keywords

Comments

First differences are in A161343. - Omar E. Pol, May 03 2015
From Gary W. Adamson, Aug 30 2016: (Start)
Let M =
1, 0, 0, 0, 0, ...
8, 0, 0, 0, 0, ...
7, 1, 0, 0, 0, ...
0, 8, 0, 0, 0, ...
0, 7, 1, 0, 0, ...
0, 0, 8, 0, 0, ...
0, 0, 7, 1, 0, ...
...
Then M^k converges to a single nonzero column giving the sequence.
The sequence with offset 1 divided by its aerated variant is (1, 8, 7, 0, 0, 0, ...). (End)

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<0, 0,
          b(n-1)+x^add(i, i=Bits[Split](n)))
        end:
    a:= n-> subs(x=7, b(n-1)):
    seq(a(n), n=0..44);  # Alois P. Heinz, Mar 06 2023
  • Mathematica
    A161342list[nmax_]:=Join[{0},Accumulate[7^DigitCount[Range[0,nmax-1],2,1]]];A161342list[100] (* Paolo Xausa, Aug 05 2023 *)

Formula

From Nathaniel Johnston, Nov 13 2010: (Start)
a(n) = Sum_{k=0..n-1} 7^A000120(k).
a(n) = 1 + 7 * Sum_{k=1..n-1} A151785(k), for n >= 1.
a(2^n) = 2^(3n).
(End)
a(n) = Sum_{k=0..floor(log_2(n))} 7^k*A360189(n-1,k). - Alois P. Heinz, Mar 06 2023

Extensions

More terms from Nathaniel Johnston, Nov 13 2010

A268524 a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s)=(3,1).

Original entry on oeis.org

1, 4, 13, 16, 43, 52, 61, 64, 145, 172, 199, 208, 235, 244, 253, 256, 499, 580, 661, 688, 769, 796, 823, 832, 913, 940, 967, 976, 1003, 1012, 1021, 1024, 1753, 1996, 2239, 2320, 2563, 2644, 2725, 2752, 2995, 3076, 3157, 3184, 3265, 3292, 3319, 3328, 3571, 3652, 3733, 3760, 3841, 3868, 3895
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2016

Keywords

Comments

Number of triples 0 <= i, j, k < n such that bitwise AND of all pairs (i, j), (j, k), (k, i) is 0. - Peter Karpov, Mar 01 2016
Start with A = [[[1]]], iteratively replace every element Aijk with Aijk * [[[1, 1], [1, 0]], [[1, 0], [0, 0]]]. a(n) is the sum of the resulting array inside the cubic region i, j, k < n. - Peter Karpov, Mar 01 2016

Crossrefs

Sequences of form a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • PARI
    a(n) = if (n==1, 1, 3*a(ceil(n/2)) + a(floor(n/2))); \\ Michel Marcus, Mar 24 2016

A160722 Number of "ON" cells at n-th stage in a certain 2-dimensional cellular automaton based on Sierpinski triangles (see Comments for precise definition).

Original entry on oeis.org

0, 1, 5, 9, 19, 23, 33, 43, 65, 69, 79, 89, 111, 121, 143, 165, 211, 215, 225, 235, 257, 267, 289, 311, 357, 367, 389, 411, 457, 479, 525, 571, 665, 669, 679, 689, 711, 721, 743, 765, 811, 821, 843, 865, 911, 933, 979, 1025, 1119, 1129, 1151, 1173, 1219, 1241
Offset: 0

Views

Author

Omar E. Pol, May 25 2009, Jan 03 2010

Keywords

Comments

This cellular automata is formed by the concatenation of three Sierpinski triangles, starting from a central vertex. Adjacent polygons are fused. The ON cells are triangles, but we only count after fusion. The sequence gives the number of polygons at the n-th round.
If instead we start from four Sierpinski triangles we get A160720.

Examples

			We start at round 0 with no polygons, a(0) = 0.
At round 1 we turn ON the first triangle in each of the three Sierpinski triangles. After fusion we have a concave pentagon, so a(1) = 1.
At round 2 we turn ON two triangles in each the three Sierpinski triangles. After fusions we have the concave pentagon and four triangles. So a(2) = 1 + 4 = 5.
		

Crossrefs

A160723 gives the first differences.

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = 2 a[Floor[#]] + a[Ceiling[#]] &[n/2]; Array[3 a[#] - 2 # &, 54, 0] (* Michael De Vlieger, Nov 01 2022 *)

Formula

a(n) = 3*A006046(n) - 2*n. - Max Alekseyev, Jan 21 2010

Extensions

Extended by Max Alekseyev, Jan 21 2010

A233774 Total number of vertices in the first n rows of Sierpinski gasket, with a(0) = 1.

Original entry on oeis.org

1, 3, 6, 10, 15, 19, 25, 33, 42, 46, 52, 60, 70, 78, 90, 106, 123, 127, 133, 141, 151, 159, 171, 187, 205, 213, 225, 241, 261, 277, 301, 333, 366, 370, 376, 384, 394, 402, 414, 430, 448, 456, 468, 484, 504, 520, 544, 576, 610, 618, 630, 646, 666, 682
Offset: 0

Views

Author

Omar E. Pol, Dec 16 2013

Keywords

Examples

			Illustration of initial terms:
-----------------------------------------------------
           Diagram            n     A233775(n)   a(n)
-----------------------------------------------------
              *               0         1         1
             /T\
            *---*             1         2         3
           /T\ /T\
          *---*---*           2         3         6
         /T\     /T\
        *---*   *---*         3         4        10
       /T\ /T\ /T\ /T\
      *---*---*---*---*       4         5        15
     /T\             /T\
    *---*           *---*     5         4        19
-----------------------------------------------------
After five stages the number of "black" triangles in the structure is A006046(5) = 11. The total number of vertices is 19, so a(5) = 19.
		

Crossrefs

Partial sums of A233775.

Programs

  • Mathematica
    A233775[n_] := If[n == 0, 1, (2^IntegerExponent[n, 2]+1)*2^(DigitSum[n, 2]-1)];
    Accumulate[Array[A233775, 100, 0]] (* Paolo Xausa, Aug 07 2024 *)

Formula

a(2^k) = A067771(k), k >= 0.

A233775 Number of vertices in the n-th row of the Sierpinski gasket (cf. A047999).

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 6, 8, 9, 4, 6, 8, 10, 8, 12, 16, 17, 4, 6, 8, 10, 8, 12, 16, 18, 8, 12, 16, 20, 16, 24, 32, 33, 4, 6, 8, 10, 8, 12, 16, 18, 8, 12, 16, 20, 16, 24, 32, 34, 8, 12, 16, 20, 16, 24, 32, 36, 16, 24, 32, 40, 32, 48, 64, 65, 4, 6, 8, 10, 8, 12
Offset: 0

Views

Author

Omar E. Pol, Dec 16 2013

Keywords

Comments

Partial sums give A233774.
The subsequence of odd terms is A083318. - Gary W. Adamson, Jan 13 2014
Equivalently, this is the coordination sequence for the Sierpinski gasket with respect to the apex. - N. J. A. Sloane, Sep 19 2020

Examples

			Illustration of initial terms:
--------------------------------------------------------
           Diagram            n        a(n)   A233774(n)
--------------------------------------------------------
              *               0         1         1
             /T\
            *---*             1         2         3
           /T\ /T\
          *---*---*           2         3         6
         /T\     /T\
        *---*   *---*         3         4        10
       /T\ /T\ /T\ /T\
      *---*---*---*---*       4         5        15
     /T\             /T\
    *---*           *---*     5         4        19
--------------------------------------------------------
After five stages the number of "black" triangles in the structure is A006046(5) = 11 and the number of "black" triangles in row 5 is A001316(5-1) = 2. The number of vertices in row 5 is equal to 4, so a(5) = 4.
Written as an irregular triangle the sequence begins:
  1;
  2;
  3;
  4,5;
  4,6,8,9;
  4,6,8,10,8,12,16,17;
  4,6,8,10,8,12,16,18,8,12,16,20,16,24,32,33;
  ...
		

Crossrefs

Right border gives A094373.

Programs

Formula

a(0)=1, a(n) = (2^t(n) + 1) * 2^(c(n) - 1) where t(n) = A007814(n) is the number of trailing zeros in the binary representation of n and c(n) = A000120(n) is the total number of ones in the binary representation of n. - Johan Falk, Jun 24 2020

A268525 a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s)=(2,3).

Original entry on oeis.org

1, 5, 13, 25, 41, 65, 89, 125, 157, 205, 253, 325, 373, 445, 517, 625, 689, 785, 881, 1025, 1121, 1265, 1409, 1625, 1721, 1865, 2009, 2225, 2369, 2585, 2801, 3125, 3253, 3445, 3637, 3925, 4117, 4405, 4693, 5125, 5317, 5605, 5893, 6325, 6613, 7045, 7477, 8125, 8317, 8605, 8893, 9325, 9613, 10045
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2016

Keywords

Crossrefs

Sequences of form a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Magma
    [n le 1 select 1 else 2*Self(Ceiling(n/2))+3*Self(Floor(n/2)): n in [1..60]]; // Vincenzo Librandi, Aug 30 2016
  • PARI
    a(n) = if (n==1, 1, 2*a(ceil(n/2))+3*a(floor(n/2))); \\ Michel Marcus, Aug 30 2016
    
Previous Showing 21-30 of 71 results. Next