cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A254575 Triangle T(n,k) in which the n-th row encodes how to hang a picture by wrapping rope around n nails using a polynomial number of twists, such that removing one nail causes the picture to fall; n>=1, 1<=k<=A073121(n).

Original entry on oeis.org

1, 1, 2, -1, -2, 1, 2, -1, -2, 3, 2, 1, -2, -1, -3, 1, 2, -1, -2, 3, 4, -3, -4, 2, 1, -2, -1, 4, 3, -4, -3, 1, 2, -1, -2, 3, 2, 1, -2, -1, -3, 4, 5, -4, -5, 3, 1, 2, -1, -2, -3, 2, 1, -2, -1, 5, 4, -5, -4, 1, 2, -1, -2, 3, 2, 1, -2, -1, -3, 4, 5, -4, -5, 6, 5
Offset: 1

Views

Author

Alois P. Heinz, Feb 01 2015

Keywords

Comments

In step k the rope has to be wrapped around nail |T(n,k)| clockwise if T(n,k)>0 and counterclockwise if T(n,k)<0.
1 or (-1) appears A062383(n-1) times in row n.
n or (-n) appears A053644(n) times in row n.

Examples

			Triangle T(n,k) begins:
  1;
  1, 2, -1, -2;
  1, 2, -1, -2, 3, 2,  1, -2, -1, -3;
  1, 2, -1, -2, 3, 4, -3, -4,  2,  1, -2, -1, 4, 3, -4, -3;
		

Crossrefs

Row sums give A063524.

Programs

  • Maple
    r:= s-> seq(-s[-k], k=1..nops(s)):
    T:= proc(n) option remember; `if`(n=1, 1, (m->
          ((x, y)-> [x[], y[], r(x), r(y)][])([T(m)],
           map(h-> h+sign(h)*m, [T(n-m)])))(iquo(n+1, 2)))
        end:
    seq(T(n), n=1..7);
  • Mathematica
    r[s_List] := -Reverse[s];
    T[1] = {1}; T[n_] := T[n] = Module[{ m = Quotient[n+1, 2]}, Function[{x, y}, {x, y, r[x], r[y]} // Flatten][T[m], Function[h, h + Sign[h]*m] /@ T[n - m]]];
    Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)

A053644 Most significant bit of n, msb(n); largest power of 2 less than or equal to n; write n in binary and change all but the first digit to zero.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
Offset: 0

Views

Author

Henry Bottomley, Mar 22 2000

Keywords

Comments

Except for the initial term, 2^n appears 2^n times. - Lekraj Beedassy, May 26 2005
a(n) is the smallest k such that row k in triangle A265705 contains n. - Reinhard Zumkeller, Dec 17 2015
a(n) is the sum of totient function over powers of 2 <= n. - Anthony Browne, Jun 17 2016
Given positive n, reverse the bits of n and divide by 2^floor(log_2 n). Numerators are in A030101. Ignoring the initial 0, denominators are in this sequence. - Alonso del Arte, Feb 11 2020

Crossrefs

See A000035 for least significant bit(n).
MASKTRANS transform of A055975 (prepended with 0), MASKTRANSi transform of A048678.
Bisection of A065267, A065279, A065291, A072376.
First differences of A063915. Cf. A076877, A073121.
This is Guy Steele's sequence GS(5, 5) (see A135416).
Equals for n >= 1 the first right hand column of A160464. - Johannes W. Meijer, May 24 2009
Diagonal of A088370. - Alois P. Heinz, Oct 28 2011

Programs

  • Haskell
    a053644 n = if n <= 1 then n else 2 * a053644 (div n 2)
    -- Reinhard Zumkeller, Aug 28 2014
    a053644_list = 0 : concat (iterate (\zs -> map (* 2) (zs ++ zs)) [1])
    -- Reinhard Zumkeller, Dec 08 2012, Oct 21 2011, Oct 17 2010
    
  • Magma
    [0] cat [2^Ilog2(n): n in [1..90]]; // Vincenzo Librandi, Dec 11 2018
    
  • Maple
    a:= n-> 2^ilog2(n):
    seq(a(n), n=0..80);  # Alois P. Heinz, Dec 20 2016
  • Mathematica
    A053644[n_] := 2^(Length[ IntegerDigits[n, 2]] - 1); A053644[0] = 0; Table[A053644[n], {n, 0, 74}] (* Jean-François Alcover, Dec 01 2011 *)
    nv[n_] := Module[{c = 2^n}, Table[c, {c}]]; Join[{0}, Flatten[Array[nv, 7, 0]]] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    a(n)=my(k=1);while(k<=n,k<<=1);k>>1 \\ Charles R Greathouse IV, May 27 2011
    
  • PARI
    a(n) = if(!n, 0, 2^exponent(n)) \\ Iain Fox, Dec 10 2018
    
  • Python
    def a(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1) # Indranil Ghosh, May 25 2017
    
  • Python
    def A053644(n): return 1<Chai Wah Wu, Jul 27 2022
  • Scala
    (0 to 127).map(Integer.highestOneBit()) // _Alonso del Arte, Feb 26 2020
    

Formula

a(n) = a(floor(n / 2)) * 2.
a(n) = 2^A000523(n).
From n >= 1 onward, A053644(n) = A062383(n)/2.
a(0) = 0, a(1) = 1 and a(n+1) = a(n)*floor(n/a(n)). - Benoit Cloitre, Aug 17 2002
G.f.: 1/(1 - x) * (x + Sum_{k >= 1} 2^(k - 1)*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = (A003817(n) + 1)/2 = A091940(n) + 1. - Reinhard Zumkeller, Feb 15 2004
a(n) = Sum_{k = 1..n} (floor(2^k/k) - floor((2^k - 1)/k))*A000010(k). - Anthony Browne, Jun 17 2016
a(2^m+k) = 2^m, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 07 2016

A006046 Total number of odd entries in first n rows of Pascal's triangle: a(0) = 0, a(1) = 1, a(2k) = 3*a(k), a(2k+1) = 2*a(k) + a(k+1). a(n) = Sum_{i=0..n-1} 2^wt(i).

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 15, 19, 27, 29, 33, 37, 45, 49, 57, 65, 81, 83, 87, 91, 99, 103, 111, 119, 135, 139, 147, 155, 171, 179, 195, 211, 243, 245, 249, 253, 261, 265, 273, 281, 297, 301, 309, 317, 333, 341, 357, 373, 405, 409, 417, 425, 441, 449, 465, 481, 513, 521
Offset: 0

Views

Author

Keywords

Comments

The graph has a blancmange or Takagi appearance. For the asymptotics, see the references by Flajolet with "Mellin" in the title. - N. J. A. Sloane, Mar 11 2021
The following alternative construction of this sequence is due to Thomas Nordhaus, Oct 31 2000: For each n >= 0 let f_n be the piecewise linear function given by the points (k /(2^n), a(k) / 3^n), k = 0, 1, ..., 2^n. f_n is a monotonic map from the interval [0,1] into itself, f_n(0) = 0, f_n(1) = 1. This sequence of functions converges uniformly. But the limiting function is not differentiable on a dense subset of this interval.
I submitted a problem to the Amer. Math. Monthly about an infinite family of non-convex sequences that solve a recurrence that involves minimization: a(1) = 1; a(n) = max { ua(k) + a(n-k) | 1 <= k <= n/2 }, for n > 1; here u is any real-valued constant >= 1. The case u=2 gives the present sequence. Cf. A130665 - A130667. - Don Knuth, Jun 18 2007
a(n) = sum of (n-1)-th row terms of triangle A166556. - Gary W. Adamson, Oct 17 2009
From Gary W. Adamson, Dec 06 2009: (Start)
Let M = an infinite lower triangular matrix with (1, 3, 2, 0, 0, 0, ...) in every column shifted down twice:
1;
3;
2; 1;
0, 3;
0, 2, 1;
0, 0, 3;
0, 0, 2, 1;
0, 0, 0, 3;
0, 0, 0, 2, 1;
...
This sequence starting with "1" = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. (End)
a(n) is also the sum of all entries in rows 0 to n of Sierpiński's triangle A047999. - Reinhard Zumkeller, Apr 09 2012
The production matrix of Dec 06 2009 is equivalent to the following: Let p(x) = (1 + 3x + 2x^2). The sequence = P(x) * p(x^2) * p(x^4) * p(x^8) * .... The sequence divided by its aerated variant = (1, 3, 2, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2016
Also the total number of ON cells, rows 1 through n, for cellular automaton Rule 90 (Cf. A001316, A038183, also Mathworld Link). - Bradley Klee, Dec 22 2018

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.
  • Flajolet, Philippe, and Mordecai Golin. "Mellin transforms and asymptotics." Acta Informatica 31.7 (1994): 673-696.
  • Flajolet, Philippe, Mireille Régnier, and Robert Sedgewick. "Some uses of the Mellin integral transform in the analysis of algorithms." in Combinatorial algorithms on words. Springer, 1985. 241-254.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A001316.
See A130665 for Sum 3^wt(n).
a(n) = A074330(n-1) + 1 for n >= 2. A080978(n) = 2*a(n) + 1. Cf. A080263.
Sequences of form a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Haskell
    a006046 = sum . concat . (`take` a047999_tabl)
    -- Reinhard Zumkeller, Apr 09 2012
    
  • Magma
    [0] cat [n le 1 select 1 else 2*Self(Floor(n/2)) + Self(Floor(Ceiling(n/2))): n in [1..60]]; // Vincenzo Librandi, Aug 30 2016
  • Maple
    f:=proc(n) option remember;
    if n <= 1 then n elif n mod 2 = 0 then 3*f(n/2)
    else 2*f((n-1)/2)+f((n+1)/2); fi; end;
    [seq(f(n),n=0..130)]; # N. J. A. Sloane, Jul 29 2014
  • Mathematica
    f[n_] := Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ]; Table[ Sum[ f[k], {k, 0, n} ], {n, 0, 100} ]
    Join[{0},Accumulate[Count[#,?OddQ]&/@Table[Binomial[n,k],{n,0,60},{k,0,n}]]] (* _Harvey P. Dale, Dec 10 2014 *)
    FoldList[Plus, 0, Total /@ CellularAutomaton[90, Join[Table[0, {#}], {1}, Table[0, {#}]], #]][[2 ;; -1]] &@50 (* Bradley Klee, Dec 23 2018 *)
    Join[{0}, Accumulate[2^DigitCount[Range[0, 127], 2, 1]]] (* Paolo Xausa, Oct 24 2024 *)
    Join[{0}, Accumulate[2^Nest[Join[#, #+1]&, {0}, 7]]] (* Paolo Xausa, Oct 24 2024, after IWABUCHI Yu(u)ki in A000120 *)
  • PARI
    A006046(n)={ n<2 & return(n); A006046(n\2)*3+if(n%2,1<M. F. Hasler, May 03 2009
    
  • PARI
    a(n) = if(!n, 0, my(r=0, t=1); forstep(i=logint(n, 2), 0, -1, r*=3; if(bittest(n, i), r+=t; t*=2)); r); \\ Ruud H.G. van Tol, Jul 06 2024
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A006046(n):return n if n<=1 else 2*A006046((n-1)//2)+A006046((n+1)//2)if n%2 else 3*A006046(n//2) # Guillermo Hernández, Dec 31 2023
    
  • Python
    from math import prod
    def A006046(n):
        d = list(map(lambda x:int(x)+1,bin(n)[:1:-1]))
        return sum((b-1)*prod(d[a:])*3**a for a, b in enumerate(d))>>1 # Chai Wah Wu, Aug 13 2025
    

Formula

a(n) = Sum_{k=0..n-1} 2^A000120(k). - Paul Barry, Jan 05 2005; simplified by N. J. A. Sloane, Apr 05 2014
For asymptotics see Stolarsky (1977). - N. J. A. Sloane, Apr 05 2014
a(n) = a(n-1) + A001316(n-1). a(2^n) = 3^n. - Henry Bottomley, Apr 05 2001
a(n) = n^(log_2(3))*G(log_2(n)) where G(x) is a function of period 1 defined by its Fourier series. - Benoit Cloitre, Aug 16 2002; formula modified by S. R. Finch, Dec 31 2007
G.f.: (x/(1-x))*Product_{k>=0} (1 + 2*x^2^k). - Ralf Stephan, Jun 01 2003; corrected by Herbert S. Wilf, Jun 16 2005
a(1) = 1, a(n) = 2*a(floor(n/2)) + a(ceiling(n/2)).
a(n) = 3*a(floor(n/2)) + (n mod 2)*2^A000120(n-1). - M. F. Hasler, May 03 2009
a(n) = Sum_{k=0..floor(log_2(n))} 2^k * A360189(n-1,k). - Alois P. Heinz, Mar 06 2023

Extensions

More terms from James Sellers, Aug 21 2000
Definition expanded by N. J. A. Sloane, Feb 16 2016

A116520 a(0) = 0, a(1) = 1; a(n) = max { 4*a(k) + a(n-k) | 1 <= k <= n/2 }, for n > 1.

Original entry on oeis.org

0, 1, 5, 9, 25, 29, 45, 61, 125, 129, 145, 161, 225, 241, 305, 369, 625, 629, 645, 661, 725, 741, 805, 869, 1125, 1141, 1205, 1269, 1525, 1589, 1845, 2101, 3125, 3129, 3145, 3161, 3225, 3241, 3305, 3369, 3625, 3641, 3705, 3769, 4025, 4089, 4345, 4601, 5625
Offset: 0

Views

Author

Roger L. Bagula, Mar 15 2006

Keywords

Comments

Equivalently, a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(0)=0, a(1)=1, for (r,s) = (1,4). - N. J. A. Sloane, Feb 16 2016
A 5-divide version of A084230.
Zero together with the partial sums of A102376. - Omar E. Pol, May 05 2010
Also, total number of cubic ON cells after n generations in a three-dimensional cellular automaton in which A102376(n-1) gives the number of cubic ON cells in the n-th level of the structure starting from the top. An ON cell remains ON forever. The structure looks like an irregular stepped pyramid, with n >= 1. - Omar E. Pol, Feb 13 2015
From Gary W. Adamson, Aug 27 2016: (Start)
The formula of Mar 26 2010 is equivalent to lim_{k->infinity} M^k of the following production matrix M:
1, 0, 0, 0, 0, 0, ...
5, 0, 0, 0, 0, 0, ...
4, 1, 0, 0, 0, 0, ...
0, 5, 0, 0, 0, 0, ...
0, 4, 1, 0, 0, 0, ...
0, 0, 5, 0, 0, 0, ...
0, 0, 4, 1, 0, 0, ...
0, 0, 0, 5, 0, 0, ...
...
The sequence with offset 1 divided by its aerated variant is (1, 5, 4, 0, 0, 0, ...). (End)

Crossrefs

Sequences of the form a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Haskell
    import Data.List (transpose)
    a116520 n = a116520_list !! n
    a116520_list = 0 : zs where
       zs = 1 : (concat $ transpose
                          [zipWith (+) vs zs, zipWith (+) vs $ tail zs])
          where vs = map (* 4) zs
    -- Reinhard Zumkeller, Apr 18 2012
  • Maple
    a:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 0 then 5*a(n/2) else 4*a((n-1)/2)+a((n+1)/2) fi end: seq(a(n),n=0..52);
  • Mathematica
    b[0] := 0 b[1] := 1 b[n_?EvenQ] := b[n] = 5*b[n/2] b[n_?OddQ] := b[n] = 4*b[(n - 1)/2] + b[(n + 1)/2] a = Table[b[n], {n, 1, 25}]

Formula

a(0) = 1, a(1) = 1; thereafter a(2n) = 5a(n) and a(2n+1) = 4a(n) + a(n+1).
Let r(x) = (1 + 5x + 4x^2). Then (1 + 5x + 9x^2 + 25x^3 + ...) = r(x) * r(x^2) * r(x^4) * r(x^8) * ... . - Gary W. Adamson, Mar 26 2010
a(n) = Sum_{k=0..n-1} 4^wt(k), where wt = A000120. - Mike Warburton, Mar 14 2019
a(n) = Sum_{k=0..floor(log_2(n))} 4^k*A360189(n-1,k). - Alois P. Heinz, Mar 06 2023

Extensions

Edited by N. J. A. Sloane, Apr 16 2006, Jul 02 2008

A064194 a(2n) = 3*a(n), a(2n+1) = 2*a(n+1)+a(n), with a(1) = 1.

Original entry on oeis.org

1, 3, 7, 9, 17, 21, 25, 27, 43, 51, 59, 63, 71, 75, 79, 81, 113, 129, 145, 153, 169, 177, 185, 189, 205, 213, 221, 225, 233, 237, 241, 243, 307, 339, 371, 387, 419, 435, 451, 459, 491, 507, 523, 531, 547, 555, 563, 567, 599, 615, 631, 639, 655, 663, 671, 675
Offset: 1

Views

Author

Guillaume Hanrot and Paul Zimmermann, Sep 21 2001

Keywords

Comments

Number of ring multiplications needed to multiply two degree-n polynomials using Karatsuba's algorithm.
Number of gates in the AND/OR problem (see Chang/Tsai reference).
a(n) is also the number of odd elements in the n X n symmetric Pascal matrix. - Stefano Spezia, Nov 14 2022

References

  • A. A. Karatsuba and Y. P. Ofman, Multiplication of multiplace numbers by automata. Dokl. Akad. Nauk SSSR 145, 2, 293-294 (1962).

Crossrefs

Cf. A023416, A267584, A047999 (Sierpinski triangle).
Cf. also A268514.
Sequences of form a(n)=r*a(ceil(n/2))+s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Magma
    [n le 1 select 1 else Self(Floor(n/2)) + 2*Self(Ceiling(n/2)): n in [1..60]]; // Vincenzo Librandi, Aug 30 2016
  • Maple
    f:=proc(n) option remember; if n=1 then 1 elif n mod 2 = 0 then 3*f(n/2) else 2*f((n+1)/2)+f((n-1)/2); fi; end; [seq(f(n),n=1..60)]; # N. J. A. Sloane, Jan 17 2016
  • Mathematica
    a[n_] := a[n] = If[EvenQ[n], 3 a[n/2], 2 a[# + 1] + a[#] &[(n - 1)/2]]; a[1] = 1; Array[a, 56] (* Michael De Vlieger, Oct 29 2022 *)
  • PARI
    a(n) = sum(i=0, n-1, sum(j=0, n-1, binomial(i+j, i) % 2)); \\ Michel Marcus, Aug 25 2013
    

Formula

Partial sums of the sequence { b(1)=1, b(n)=2^(e0(n-1)+1) } (essentially A267584), where e0(n)=A023416(n) is the number of zeros in the binary expansion of n. [Chang/Tsai] - Ralf Stephan, Jul 29 2003
a(1) = 1, a(n) = a(floor(n/2)) + 2*a(ceiling(n/2)), n > 1.
a(n+1) = Sum_{0<=i, j<=n} (binomial(i+j, i) mod 2). - Benoit Cloitre, Mar 07 2005
In particular, a(2^k)=3^k, a(3*2^k)=7*3^k. - N. J. A. Sloane, Jan 18 2016
a(n) = 2*A268514(n-1) + 1. - N. J. A. Sloane, Feb 07 2016

Extensions

Edited with clearer definition by N. J. A. Sloane, Jan 18 2016

A268524 a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s)=(3,1).

Original entry on oeis.org

1, 4, 13, 16, 43, 52, 61, 64, 145, 172, 199, 208, 235, 244, 253, 256, 499, 580, 661, 688, 769, 796, 823, 832, 913, 940, 967, 976, 1003, 1012, 1021, 1024, 1753, 1996, 2239, 2320, 2563, 2644, 2725, 2752, 2995, 3076, 3157, 3184, 3265, 3292, 3319, 3328, 3571, 3652, 3733, 3760, 3841, 3868, 3895
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2016

Keywords

Comments

Number of triples 0 <= i, j, k < n such that bitwise AND of all pairs (i, j), (j, k), (k, i) is 0. - Peter Karpov, Mar 01 2016
Start with A = [[[1]]], iteratively replace every element Aijk with Aijk * [[[1, 1], [1, 0]], [[1, 0], [0, 0]]]. a(n) is the sum of the resulting array inside the cubic region i, j, k < n. - Peter Karpov, Mar 01 2016

Crossrefs

Sequences of form a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • PARI
    a(n) = if (n==1, 1, 3*a(ceil(n/2)) + a(floor(n/2))); \\ Michel Marcus, Mar 24 2016

A268525 a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s)=(2,3).

Original entry on oeis.org

1, 5, 13, 25, 41, 65, 89, 125, 157, 205, 253, 325, 373, 445, 517, 625, 689, 785, 881, 1025, 1121, 1265, 1409, 1625, 1721, 1865, 2009, 2225, 2369, 2585, 2801, 3125, 3253, 3445, 3637, 3925, 4117, 4405, 4693, 5125, 5317, 5605, 5893, 6325, 6613, 7045, 7477, 8125, 8317, 8605, 8893, 9325, 9613, 10045
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2016

Keywords

Crossrefs

Sequences of form a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Magma
    [n le 1 select 1 else 2*Self(Ceiling(n/2))+3*Self(Floor(n/2)): n in [1..60]]; // Vincenzo Librandi, Aug 30 2016
  • PARI
    a(n) = if (n==1, 1, 2*a(ceil(n/2))+3*a(floor(n/2))); \\ Michel Marcus, Aug 30 2016
    

A268526 a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s)=(3,2).

Original entry on oeis.org

1, 5, 17, 25, 61, 85, 109, 125, 233, 305, 377, 425, 497, 545, 593, 625, 949, 1165, 1381, 1525, 1741, 1885, 2029, 2125, 2341, 2485, 2629, 2725, 2869, 2965, 3061, 3125, 4097, 4745, 5393, 5825, 6473, 6905, 7337, 7625, 8273, 8705, 9137, 9425, 9857, 10145, 10433, 10625, 11273, 11705, 12137, 12425
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2016

Keywords

Crossrefs

Sequences of form a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Magma
    [n le 1 select 1 else 3*Self(Ceiling(n/2))+2*Self(Floor(n/2)): n in [1..60]]; // Vincenzo Librandi, Aug 30 2016
  • PARI
    a(n) = if (n==1, 1, 3*a(ceil(n/2))+2*a(floor(n/2))); \\ Michel Marcus, Aug 30 2016
    

A268527 a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s)=(4,1).

Original entry on oeis.org

1, 5, 21, 25, 89, 105, 121, 125, 381, 445, 509, 525, 589, 605, 621, 625, 1649, 1905, 2161, 2225, 2481, 2545, 2609, 2625, 2881, 2945, 3009, 3025, 3089, 3105, 3121, 3125, 7221, 8245, 9269, 9525, 10549, 10805, 11061, 11125, 12149, 12405, 12661, 12725, 12981, 13045, 13109, 13125, 14149, 14405
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2016

Keywords

Crossrefs

Sequences of form a(n) = r*a(ceiling(n/2))+s*a(floor(n/2)) with a(1)=1 and (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • PARI
    a(n) = if (n==1, 1, 4*a(ceil(n/2))+a(floor(n/2))); \\ Michel Marcus, Aug 30 2016
Showing 1-9 of 9 results.