cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 102 results. Next

A211857 Number of representations of n as a sum of products of distinct pairs of integers larger than 1, considered to be equivalent when terms or factors are reordered.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 2, 5, 1, 7, 3, 8, 5, 11, 4, 16, 9, 17, 12, 25, 13, 34, 20, 37, 28, 53, 32, 69, 46, 78, 63, 108, 71, 136, 100, 160, 134, 210, 152, 265, 211, 313, 268, 403, 316, 506, 421, 596, 528, 759, 629, 943, 814, 1111, 1016
Offset: 0

Views

Author

Alois P. Heinz, Apr 22 2012

Keywords

Examples

			a(0) = 1: 0 = the empty sum.
a(1) = a(2) = a(3) = 0: no product is < 4.
a(4) = 1: 4 = 2*2.
a(6) = 1: 6 = 2*3.
a(8) = 1: 8 = 2*4.
a(9) = 1: 9 = 3*3.
a(10) = 2: 10 = 2*2 + 2*3 = 2*5.
a(12) = 3: 12 = 2*2 + 2*4 = 2*6 = 3*4.
a(16) = 5: 16 = 2*2 + 2*6 = 2*2 + 3*4 = 2*3 + 2*5 = 2*8 = 4*4.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; local c;
          c:= ceil(tau(i)/2)-1;
          `if`(n=0, 1, `if`(i<2, 0, b(n, i-1)
           +add(b(n-i*j, i-1) *binomial(c, j), j=1..min(c, n/i))))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..70);
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{c}, c = Ceiling[DivisorSigma[0, i]/2]-1; If[n==0, 1, If[i<2, 0, b[n, i-1]+Sum[b[n-i*j, i-1]*Binomial[c, j], {j, 1, Min[c, n/i]}]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

G.f.: Product_{k>0} (1+x^k)^(A038548(k)-1). - Vaclav Kotesovec, Aug 19 2019
G.f.: Product_{i>=1} Product_{j=2..i} (1 + x^(i*j)). - Ilya Gutkovskiy, Sep 23 2019

A275585 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_2(k)).

Original entry on oeis.org

1, 1, 6, 16, 52, 128, 373, 913, 2399, 5796, 14298, 33655, 79756, 183078, 419846, 942807, 2106176, 4633208, 10127557, 21870997, 46912648, 99639685, 210206722, 439777198, 914157490, 1886428608, 3869204040, 7884691072, 15976273573, 32182538964, 64484592372, 128518359868, 254868985099, 502950483815, 987904826874, 1931596634076
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 25 2016

Keywords

Comments

Euler transform of the sum of squares of divisors (A001157).

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), this sequence (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*sigma[2](d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 08 2017
  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[2, k]), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(sigma_2(k)).
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A027847(k)*a(n-k) for n > 0. - Seiichi Manyama, Jun 08 2017
a(n) ~ exp(4*Pi * Zeta(3)^(1/4) * n^(3/4) / (3^(5/4) * 5^(1/4)) - Pi * 5^(1/4) * n^(1/4) / (8 * 3^(7/4) * Zeta(3)^(1/4)) + Zeta(3) / (8*Pi^2)) * Zeta(3)^(1/8) / (2^(3/2) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 23 2018
G.f.: exp(Sum_{k>=1} sigma_3(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A356932 Number of multiset partitions of integer partitions of n such that all blocks have odd size.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 24, 42, 74, 130, 224, 383, 653, 1100, 1846, 3079, 5104, 8418, 13827, 22592, 36774, 59613, 96271, 154908, 248441, 397110, 632823, 1005445, 1592962, 2516905, 3966474, 6235107, 9777791, 15297678, 23880160, 37196958, 57819018, 89691934, 138862937
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 13 multiset partitions:
  {1}  {2}     {3}        {4}           {5}
       {1}{1}  {111}      {112}         {113}
               {1}{2}     {1}{3}        {122}
               {1}{1}{1}  {2}{2}        {1}{4}
                          {1}{111}      {2}{3}
                          {1}{1}{2}     {11111}
                          {1}{1}{1}{1}  {1}{112}
                                        {2}{111}
                                        {1}{1}{3}
                                        {1}{2}{2}
                                        {1}{1}{111}
                                        {1}{1}{1}{2}
                                        {1}{1}{1}{1}{1}
		

Crossrefs

Partitions with odd multiplicities are counted by A055922.
Odd-length multisets are counted by A000302, A027193, A058695, ranked by A026424.
Other types: A050330, A356933, A356934, A356935.
Other conditions: A001970, A006171, A007294, A089259, A107742, A356941.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],OddQ[Times@@Length/@#]&]],{n,0,8}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(1/prod(k=1, n, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^A027193(k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(13) and beyond from Andrew Howroyd, Dec 30 2022

A174465 G.f.: exp( Sum_{n>=1} A174466(n)*x^n/n ) where A174466(n) = Sum_{d|n} d*sigma(n/d)*tau(d).

Original entry on oeis.org

1, 1, 4, 7, 19, 31, 74, 122, 258, 430, 835, 1378, 2557, 4162, 7382, 11932, 20471, 32676, 54634, 86251, 141001, 220371, 353413, 546783, 863043, 1322425, 2057525, 3125092, 4801297, 7230393, 10984924, 16410474, 24679719, 36593278, 54526145, 80272501
Offset: 0

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Compare to the g.f. of the number of planar partitions of n (A000219):
exp( Sum_{n>=1} sigma_2(n)*x^n/n ) where sigma_2(n) = Sum_{d|n} d*sigma(n/d)*phi(d).
tau(n) = A000005(n) = the number of divisors of n,
and sigma(n) = A000203(n) = sum of divisors of n.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(i*j*k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 04 2017 *)
    nmax = 50; A007425 = Table[Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[A007425[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2018 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sumdiv(m,d,d*sigma(m/d)*sigma(d,0)))+x*O(x^n)),n)}

Formula

G.f.: Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k)). - Vaclav Kotesovec, Jan 04 2017
G.f.: Product_{k>=1} 1/(1 - x^k)^tau_3(k), where tau_3() = A007425. - Ilya Gutkovskiy, May 22 2018

A288391 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_3(k)).

Original entry on oeis.org

1, 1, 10, 38, 156, 534, 2014, 6796, 23312, 76165, 247234, 780343, 2435903, 7453859, 22538336, 67130594, 197666509, 574876417, 1654464954, 4711217687, 13288453688, 37133349758, 102873771662, 282630567325, 770410193747, 2084205092693, 5598070811010
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), this sequence (m=3).

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-q^k)^DivisorSigma(3,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*sigma[3](d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 08 2017
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[3, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 23 2018 *)
  • PARI
    m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^sigma(k,3))) \\ G. C. Greubel, Oct 30 2018
    

Formula

a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A027848(k)*a(n-k) for n > 0.
a(n) ~ exp((5*Pi)^(4/5) * Zeta(5)^(1/5) * n^(4/5) / (2^(8/5) * 3^(1/5)) - Zeta'(-3)/2) * Zeta(5)^(121/1200) / ((24*Pi)^(121/1200) * 5^(721/1200) * n^(721/1200)). - Vaclav Kotesovec, Mar 23 2018
G.f.: exp(Sum_{k>=1} sigma_4(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A293548 Expansion of Product_{k>=2} 1/(1 - x^k)^omega(k), where omega(k) is the number of distinct primes dividing k (A001221).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 15, 16, 28, 29, 46, 54, 77, 90, 131, 150, 211, 251, 337, 401, 540, 637, 839, 1006, 1296, 1551, 1995, 2373, 3013, 3610, 4523, 5410, 6754, 8045, 9965, 11897, 14614, 17410, 21313, 25316, 30816, 36615, 44307, 52539, 63387, 74975, 90078
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2017

Keywords

Comments

Euler transform of A001221.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^k)^PrimeNu[k], {k, 2, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d PrimeNu[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]

Formula

G.f.: Product_{k>=2} 1/(1 - x^k)^b(k), where b(k) = [x^k] Sum_{j>=1} x^prime(j)/(1 - x^prime(j)).
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), b(k) = Sum_{d|k} d*omega(d).

A381993 Number of integer partitions of n that cannot be partitioned into constant multisets with a common sum.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 4, 13, 13, 25, 33, 54, 54, 99, 124, 166, 207, 295, 352, 488, 591, 780, 987, 1253, 1488, 1951, 2419, 2993, 3665, 4563, 5508, 6840, 8270, 10127, 12289, 14869, 17781, 21635, 25992, 31167, 37184, 44581, 53008, 63259, 75076, 89080, 105531, 124752, 146842, 173516, 204141, 239921, 281461, 329929, 385852
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2025

Keywords

Examples

			The multiset partition {{2},{2},{1,1},{1,1}} has both properties (constant blocks and common sum), so (2,2,1,1,1,1) is not counted under a(8). We can also use {{2,2},{1,1,1,1}}.
The a(3) = 1 through a(8) = 13 partitions:
  (21)  (31)  (32)    (42)   (43)      (53)
              (41)    (51)   (52)      (62)
              (221)   (321)  (61)      (71)
              (311)   (411)  (322)     (332)
              (2111)         (331)     (431)
                             (421)     (521)
                             (511)     (611)
                             (2221)    (3221)
                             (3211)    (3311)
                             (4111)    (4211)
                             (22111)   (5111)
                             (31111)   (32111)
                             (211111)  (311111)
		

Crossrefs

Twice-partitions of this type (constant with equal) are counted by A279789.
Multiset partitions of this type are ranked by A326534 /\ A355743.
For distinct instead of equal block-sums we have A381717.
These partitions are ranked by A381871, zeros of A381995.
For strict instead of constant blocks we have A381994, see A381719, A382080.
The strict case is A382076.
Normal multiset partitions of this type are counted by A382204.
A001055 counts factorizations, strict A045778.
A050361 counts factorizations into distinct prime powers, see A381715.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
    Table[Length[Select[IntegerPartitions[n],Length[Select[Join@@@Tuples[mce/@Split[#]],SameQ@@Total/@#&]]==0&]],{n,0,30}]

Extensions

a(31)-a(54) from Robert Price, Mar 31 2025

A383097 Number of integer partitions of n having more than one permutation with all equal run-sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 9, 0, 7, 0, 12, 0, 1, 0, 38, 0, 1, 1, 18, 0, 38, 0, 32, 0, 1, 0, 90, 0, 1, 0, 71, 0, 78, 0, 33, 10, 1, 0, 228, 0, 31, 0, 42, 0, 156, 0, 123, 0, 1, 0, 447, 0, 1, 16, 146, 0, 222, 0, 63, 0, 102, 0, 811, 0, 1, 29, 75, 0, 334, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The a(27) = 1 partition is: (9,3,3,3,1,1,1,1,1,1,1,1,1).
The a(4) = 1 through a(16) = 9 partitions (empty columns not shown):
  (211)  (3111)  (422)     (511111)  (633)        (71111111)  (844)
                 (41111)             (6222)                   (82222)
                 (221111)            (33222)                  (442222)
                                     (4221111)                (44221111)
                                     (6111111)                (422221111)
                                     (33111111)               (811111111)
                                     (222111111)              (4411111111)
                                                              (42211111111)
                                                              (222211111111)
		

Crossrefs

These partitions are ranked by A383015, positions of terms > 1 in A382877.
For run-lengths instead of sums we have A383090, ranks A383089, unique A383094.
The complement is A383095 + A383096, ranks A383099 \/ A383100.
For any positive number of permutations we have A383098, ranks A383110.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A382876 counts permutations of prime indices with distinct run-sums, zeros A381636.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Total/@Split[#]&]]>1&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A294363 E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.

Original entry on oeis.org

1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 13 2017: (Start)
The terms of the sequence appear to be of the form 4*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(5*n+2) == 0 (mod 5); a(5*n+3) == 0 (mod 5); a(13*n+9) == 0 (mod 13). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0), A294361 (k=1), A294362 (k=2).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
    a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000005(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
Conjecture: log(a(n)/n!) ~ sqrt(2*n*log(n)). - Vaclav Kotesovec, Sep 07 2018

A319647 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^sigma_n(k).

Original entry on oeis.org

1, 1, 6, 38, 526, 13074, 702813, 70939556, 13879861574, 5583837482767, 4393101918607162, 6717450870069292051, 21057681806321501744772, 131246096280071506595491449, 1604095619160115980216291007253, 40299198842857238408636666363954678, 2031474817845087309816967328335309651478
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 26 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
          sigma[k](d), d=divisors(j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 26 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^DivisorSigma[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Product[Product[1/(1 - x^(i j))^(j^n), {j, 1, n}], {i, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Exp[Sum[DivisorSigma[n + 1, k] x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
  • PARI
    {a(n) = polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^n))^sigma(k, n)), n)} \\ Seiichi Manyama, Oct 27 2018

Formula

a(n) = [x^n] Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(j^n).
a(n) = [x^n] exp(Sum_{k>=1} sigma_(n+1)(k)*x^k/(k*(1 - x^k))).
Previous Showing 21-30 of 102 results. Next