cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A046008 Discriminants of imaginary quadratic fields with class number 11 (negated).

Original entry on oeis.org

167, 271, 659, 967, 1283, 1303, 1307, 1459, 1531, 1699, 2027, 2267, 2539, 2731, 2851, 2971, 3203, 3347, 3499, 3739, 3931, 4051, 5179, 5683, 6163, 6547, 7027, 7507, 7603, 7867, 8443, 9283, 9403, 9643, 9787, 10987, 13003, 13267, 14107, 14683, 15667
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 15000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 11, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 11};
    for(n=1, 16000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..16000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==11] # G. C. Greubel, Mar 01 2019

Extensions

a(40)-a(41) from Giovanni Resta, Mar 20 2013

A046010 Discriminants of imaginary quadratic fields with class number 13 (negated).

Original entry on oeis.org

191, 263, 607, 631, 727, 1019, 1451, 1499, 1667, 1907, 2131, 2143, 2371, 2659, 2963, 3083, 3691, 4003, 4507, 4643, 5347, 5419, 5779, 6619, 7243, 7963, 9547, 9739, 11467, 11587, 11827, 11923, 12043, 14347, 15787, 16963, 20563
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 21000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 13, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A046014 Discriminants of imaginary quadratic fields with class number 17 (negated).

Original entry on oeis.org

383, 991, 1091, 1571, 1663, 1783, 2531, 3323, 3947, 4339, 4447, 4547, 4651, 5483, 6203, 6379, 6451, 6827, 6907, 7883, 8539, 8731, 9883, 11251, 11443, 12907, 13627, 14083, 14779, 14947, 16699, 17827, 18307, 19963, 21067, 23563, 24907, 25243, 26083, 26107, 27763, 31627, 33427, 36523, 37123
Offset: 1

Views

Author

Keywords

Comments

45 discriminants in this sequence (proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 40000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 17, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A048925 Discriminants of imaginary quadratic fields with class number 24 (negated).

Original entry on oeis.org

695, 759, 1191, 1316, 1351, 1407, 1615, 1704, 1736, 1743, 1988, 2168, 2184, 2219, 2372, 2408, 2479, 2660, 2696, 2820, 2824, 2852, 2856, 2915, 2964, 3059, 3064, 3127, 3128, 3444, 3540, 3560, 3604, 3620, 3720, 3864, 3876, 3891, 3899, 3912
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 24, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(),QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 24] # Andy Huchala, Feb 15 2022

A328825 Negative discriminants with form class group isomorphic to C_3 (negated).

Original entry on oeis.org

23, 31, 44, 59, 76, 83, 92, 107, 108, 124, 139, 172, 211, 243, 268, 283, 307, 331, 379, 499, 547, 643, 652, 883, 907
Offset: 1

Views

Author

Jianing Song, Dec 05 2019

Keywords

Comments

Also negative discriminants with form class number 3.
Conjecture: this sequence is finite and this is the full list.
The fundamental terms are listed in A006203, and that is a full sequence.
From Jianing Song, May 17 2021: (Start)
Equivalently, negative discriminants of orders whose class group is isomorphic to C_3 (negated).
The known even terms are all congruent to 12 modulo 16. Among the known even terms, k/4 is either here or in A133675. What's the reason for that?
Among the known terms, k is in A023679 if and only if k is in this sequence and k/4 is not. Is there a connection between these two sequences? (End)

Crossrefs

Cf. A133675 (negative discriminants with form class group isomorphic to the trivial group), A322710 (isomorphic to C_2), this sequence (isomorphic to C_3), A329182 (isomorphic to C_2 X C_2), A330219 (isomorphic to C_4).

Programs

  • PARI
    isA328825(d) = (d>0) && ((d%4==0)||(d%4==3)) && quadclassunit(-d)[2]==[3] \\ Corrected by Jianing Song, May 17 2021

A046003 Discriminants of imaginary quadratic fields with class number 6 (negated).

Original entry on oeis.org

87, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472, 515, 628, 707, 771, 808, 835, 843, 856, 1048, 1059, 1099, 1108, 1147, 1192, 1203, 1219, 1267, 1315, 1347, 1363, 1432, 1563, 1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787, 2923, 3235, 3427, 3523, 3763
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[3800], NumberFieldClassNumber[Sqrt[-#]] == 6 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 6};
    for(n=1, 4000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..4000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==6] # G. C. Greubel, Mar 01 2019

Extensions

More terms from Seiichi Manyama, Jun 03 2018

A046007 Discriminants of imaginary quadratic fields with class number 10 (negated).

Original entry on oeis.org

119, 143, 159, 296, 303, 319, 344, 415, 488, 611, 635, 664, 699, 724, 779, 788, 803, 851, 872, 916, 923, 1115, 1268, 1384, 1492, 1576, 1643, 1684, 1688, 1707, 1779, 1819, 1835, 1891, 1923, 2152, 2164, 2363, 2452, 2643, 2776, 2836, 2899, 3028
Offset: 1

Views

Author

Keywords

Comments

87 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[14000], NumberFieldClassNumber[Sqrt[-#]] == 10 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 10} \\ Andrew Howroyd, Jul 24 2018
    
  • Sage
    [n for n in (1..3500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==10] # G. C. Greubel, Mar 01 2019

A046009 Discriminants of imaginary quadratic fields with class number 12 (negated).

Original entry on oeis.org

231, 255, 327, 356, 440, 516, 543, 655, 680, 687, 696, 728, 731, 744, 755, 804, 888, 932, 948, 964, 984, 996, 1011, 1067, 1096, 1144, 1208, 1235, 1236, 1255, 1272, 1336, 1355, 1371, 1419, 1464, 1480, 1491, 1515, 1547, 1572, 1668, 1720, 1732
Offset: 1

Views

Author

Keywords

Comments

206 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 2000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 12, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 12} \\ Andrew Howroyd, Jul 24 2018
    
  • Sage
    [n for n in (1..3000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==12] # G. C. Greubel, Mar 01 2019

A046011 Discriminants of imaginary quadratic fields with class number 14 (negated).

Original entry on oeis.org

215, 287, 391, 404, 447, 511, 535, 536, 596, 692, 703, 807, 899, 1112, 1211, 1396, 1403, 1527, 1816, 1851, 1883, 2008, 2123, 2147, 2171, 2335, 2427, 2507, 2536, 2571, 2612, 2779, 2931, 2932, 3112, 3227, 3352, 3579, 3707, 3715, 3867, 3988
Offset: 1

Views

Author

Keywords

Comments

There are 95 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 14, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 14} \\ Andrew Howroyd, Jul 24 2018

A046013 Discriminants of imaginary quadratic fields with class number 16 (negated).

Original entry on oeis.org

399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943, 1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379, 1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716, 1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072
Offset: 1

Views

Author

Keywords

Comments

322 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 16, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && qfbclassno(-n) == 16} \\ Andrew Howroyd, Jul 24 2018
Previous Showing 21-30 of 51 results. Next