cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A385632 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 8, 81, 872, 9669, 109128, 1246419, 14359304, 166512285, 1940885504, 22717923586, 266833238328, 3143237113479, 37119019790016, 439290932937672, 5208668386199112, 61861932606093901, 735804601177846968, 8763478151940329859, 104498114621004830160, 1247410783999193335434
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(5*n+1, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(4*n+1)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+k,k).
a(n) = 3^(5*n+1)*2^(-4*n-1) - binomial(5*n+1, n)*(hypergeom([1, -1-4*n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((3-2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 14 2025
From Seiichi Manyama, Aug 16 2025: (Start)
G.f.: 1/(1 - x*g^3*(15-7*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 2*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)

A226751 G.f.: 1 / (1 + 6*x*G(x) - 7*x*G(x)^2), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 9, 48, 289, 1761, 10932, 68664, 435201, 2777763, 17829489, 114968052, 744178716, 4832624044, 31469746632, 205422018288, 1343734578561, 8806130111847, 57805893969531, 380013533789928, 2501507255441049, 16486378106441697, 108773240389894056
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 48*x^3 + 289*x^4 + 1761*x^5 + 10932*x^6 +...
A related series is G(x) = 1 + x*G(x)^3, where
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
such that A(x) = 1/(1 + 6*x*G(x) - 7*x*G(x)^2).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+2*k,n-k]*Binomial[2*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 17 2013 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(n+2*k, n-k)*binomial(2*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(3*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^3+x*O(x^n)); polcoeff(1/(1+6*x*G-7*x*G^2), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^3+x*O(x^n)); polcoeff(1/(1-x*G-7*x^2*G^4), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(-2*k, k).
G.f.: 1/(1 - x*G(x) - 7*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
a(n) ~ 3^(3*n+3/2)/(5*sqrt(Pi*n)*2^(2*n+1)). - Vaclav Kotesovec, Jun 17 2013
Conjecture: 18*n*(2*n-1)*(55*n-76)*a(n) +(-11605*n^3+28521*n^2-20870*n+4536)*a(n-1) -24*(55*n-21)*(3*n-4)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(2*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(2*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (3-2*G(x))) where G(x) = 1+x*G(x)^3 is the g.f. of A001764. (End)
G.f.: B(x)^2/(1 + 5*(B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025

A386617 a(n) = Sum_{k=0..n-1} binomial(3*k+1,k) * binomial(3*n-3*k,n-k-1).

Original entry on oeis.org

0, 1, 10, 81, 610, 4436, 31626, 222681, 1554772, 10790721, 74560728, 513452604, 3526463304, 24168921568, 165357919850, 1129724254953, 7709039995368, 52551835079699, 357930487932282, 2436038623348521, 16568626556643738, 112626521811112464, 765201654587796312, 5196570956399432796
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(3*k+1, k)*binomial(3*n-3*k, n-k-1));

Formula

G.f.: g^3 * (g-1)/(3-2*g)^2 where g=1+x*g^3.
G.f.: g/((1-g)^2 * (1-3*g)^2) where g*(1-g)^2 = x.
a(n) = Sum_{k=0..n-1} binomial(3*k+1+l,k) * binomial(3*n-3*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(3*n+2,k).
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(2*n+k+2,k).

A079563 a(n) = a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) for m=7.

Original entry on oeis.org

1, 14, 231, 3934, 67851, 1177974, 20531770, 358788696, 6281076123, 110103674128, 1931983053056, 33926800240578, 596145343139514, 10480467311987778, 184327560283768776, 3243034966775972144, 57074433199551436347
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

More generally, for m>=2, a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n * (1 + (2*m-4)/(3*sqrt(Pi*n*m*(m-1)/2))), extended by Vaclav Kotesovec, May 25 2020
See A000302, A006256, A078995 for cases m=2,3 and 4.

Crossrefs

Formula

a(n) = (7/12)*(823543/46656)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.41...
c = 10/(3*sqrt(21*Pi)) = 0.410387535383... - Vaclav Kotesovec, May 25 2020
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} binomial(7*k+x,k)*binomial(7*(n-k)-x,n-k) for any real x.
a(n) = Sum_{k=0..n} 6^(n-k)*binomial(7*n+1,k).
a(n) = Sum_{k=0..n} 7^(n-k)*binomial(6*n+k,k). (End)
a(n) = [x^n] 1/((1-7*x) * (1-x)^(6*n+1)). - Seiichi Manyama, Aug 03 2025
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} 7^k * (-6)^(n-k) * binomial(7*n+1,k) * binomial(7*n-k,n-k).
G.f.: g^2/(7-6*g)^2 where g = 1+x*g^7 is the g.f. of A002296. (End)

A075045 Coefficients A_n for the s=3 tennis ball problem.

Original entry on oeis.org

1, 9, 69, 502, 3564, 24960, 173325, 1196748, 8229849, 56427177, 386011116, 2635972920, 17974898872, 122430895956, 833108684637, 5664553564440, 38488954887171, 261369752763963, 1774016418598269, 12035694958994142, 81624256468292016, 553377268856455968
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

See A049235 for more information.

Programs

  • Maple
    FussArea := proc(s,n)
        local a,i,j ;
        a := binomial((s+1)*n,n)*n/(s*n+1) ; ;
        add(j *(n-j) *binomial((s+1)*j,j) *binomial((s+1)*(n-j),n-j) /(s*j+1) /(s*(n-j)+1),j=0..n) ;
        a := a+binomial(s+1,2)*% ;
        for j from 0 to n-1 do
            for i from 0 to j do
                i*(j-i) /(s*i+1) /(s*(j-i)+1) /(n-j)
                *binomial((s+1)*i,i) *binomial((s+1)*(j-i),j-i)
                *binomial((s+1)*(n-j)-2,n-1-j) ;
                a := a-%*binomial(s+1,2) ;
            end do:
        end do:
        a ;
    end proc:
    seq(FussArea(2,n),n=1..30) ; # R. J. Mathar, Mar 31 2023
  • Mathematica
    FussArea[s_, n_] := Module[{a, i, j, pc}, a = Binomial[(s + 1)*n, n]*n/(s*n + 1); pc = Sum[j*(n - j)*Binomial[(s + 1)*j, j]*Binomial[(s + 1)*(n - j), n - j]/(s*j + 1)/(s*(n - j) + 1), {j, 0, n}]; a = a + Binomial[s + 1, 2]*pc; For[j = 0, j <= n - 1 , j++, For[i = 0, i <= j, i++, pc = i*(j - i)/(s*i + 1)/(s*(j - i) + 1)/(n - j)*Binomial[(s + 1)*i, i]* Binomial[(s + 1)*(j - i), j - i]*Binomial[(s + 1)*(n - j) - 2, n - 1 - j]; a = a - pc*Binomial[s + 1, 2]; ]]; a];
    Table[FussArea[2, n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2023, after R. J. Mathar *)

Formula

G.f.: seems to be (3*g-1)^(-2)*(1-g)^(-3) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
Conjecture: D-finite with recurrence 8*(2*n+3)*(7*n+1)*(n+1)*a(n) +6*(-252*n^3-477*n^2-220*n-11)*a(n-1) +81*(7*n+8)*(3*n-1)*(3*n+1)*a(n-2)=0. - Jean-François Alcover, Feb 07 2019
a(n) = (3n+2)*(n+1)*binomial(3n+3,n+1)/2/(2n+3) - A049235(n). [Merlini Theorem 2.5 for s=3] - R. J. Mathar, Oct 01 2021
From Seiichi Manyama, Jul 28 2025: (Start)
a(n) = Sum_{k=0..n} binomial(3*k+3+l,k) * binomial(3*n-3*k-l,n-k) for every real number l.
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n+4,k).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(2*n+k+3,k). (End)

A188911 Binomial convolution of the binomial coefficients bin(3n,n) (A005809).

Original entry on oeis.org

1, 6, 48, 438, 4356, 46056, 509106, 5814738, 68050116, 811240872, 9810384048, 119990105208, 1481115683754, 18421300391760, 230574816629310, 2901721280735838, 36688485233689668, 465774244616805624, 5934465567864915024
Offset: 0

Views

Author

Emanuele Munarini, Apr 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]Binomial[3n-3k,n-k], {k,0,n}], {n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k),k,0,n),n,0,12);
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k));
    vector(66,n,a(n-1)) /* show terms */ /* Joerg Arndt, Apr 13 2011 */

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k).
E.g.f.: F(1/3,2/3;1/2,1;27*x/4)^2, where F(a1,a2;b1,b2;z) is a hypergeometric series.
Recurrence: 8*n^2 * (2*n-1)^2 * (9*n^3 - 54*n^2 + 102*n - 61)*a(n) = 24*(3*n-1)*(108*n^6 - 855*n^5 + 2628*n^4 - 4059*n^3 + 3380*n^2 - 1470*n + 264)*a(n-1) - 18*(3645*n^7 - 34992*n^6 + 138348*n^5 - 291843*n^4 + 352980*n^3 - 241794*n^2 + 84684*n - 11104)*a(n-2) + 2187*(n-2)^2 * (3*n-7)*(3*n-5)*(9*n^3 - 27*n^2 + 21*n - 4)*a(n-3). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 3^(3*n+1) / (Pi * n * 2^(n+1)). - Vaclav Kotesovec, Feb 25 2014

A188912 Binomial convolution of the binomial coefficients bin(3n,n)/(2n+1) (A001764).

Original entry on oeis.org

1, 2, 8, 42, 260, 1816, 13962, 116094, 1029124, 9609144, 93569808, 942642696, 9763181946, 103455616400, 1117379189926, 12264816349938, 136501928050116, 1537591374945704, 17503603786398576, 201128739609458904, 2330480521265639136
Offset: 0

Views

Author

Emanuele Munarini, Apr 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]/(2k+1)Binomial[3n-3k,n-k]/(2n-2k+1), {k,0,n}], {n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)/(2*k+1)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*binomial(3*k, k)*binomial(3*n-3*k, n-k)/((2*k+1)*(2*n-2*k+1)).
E.g.f.: F(1/3,2/3;1,3/2;27*x/4)^2, where F(a1,a2;b1,b2;z) is a hypergeometric series.
From Vaclav Kotesovec, Jun 10 2019: (Start)
Recurrence: 8*n^2*(n+1)*(2*n+1)^2*(9*n^3-54*n^2+84*n-35)*a(n) = 24*n*(324*n^7-2187*n^6+4689*n^5-4185*n^4+1464*n^3+122*n^2-223*n+44)*a(n-1) - 18*(n-1)*(3645*n^7-30618*n^6+96066*n^5-144585*n^4+103662*n^3-21834*n^2-10860*n+4480)*a(n-2) + 2187*(n-2)^2*(n-1)*(3*n-7)*(3*n-5)*(9*n^3-27*n^2+3*n+4)*a(n-3).
a(n) ~ 3^(3*n + 1) / (Pi * n^3 * 2^(n + 1)). (End)

A188913 Binomial convolution of the binomial coefficients bin(3n,n) (A005809) and bin(3n,n)/(2n+1) (A001764).

Original entry on oeis.org

1, 4, 24, 168, 1300, 10896, 97734, 928752, 9262116, 96091440, 1029267888, 11311712352, 126921365298, 1448378629600, 16760687848890, 196237061599008, 2320532776851972, 27676644749022672, 332568471941572944, 4022574792189178080
Offset: 0

Views

Author

Emanuele Munarini, Apr 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]Binomial[3n-3k,n-k]/(2n-2k+1), {k,0,n}], {n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0,n,binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1));
    vector(66, n, a(n-1)) /* show terms */ /* Joerg Arndt, Apr 13 2011 */

Formula

a(n) = sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k=0..n).
E.g.f.: F(1/3,2/3;1/2,1;27*x/4)*F(1/3,2/3;1,3/2;27*x/4), where F(a1,a2;b1,b2;z) is a hypergeometric series.
Recurrence: 8*n^2 * (2*n+1)^2 * (9*n^3 - 54*n^2 + 84*n - 35)*a(n) = 24*(324*n^7 - 2187*n^6 + 4689*n^5 - 4185*n^4 + 1464*n^3 + 122*n^2 - 223*n + 44)*a(n-1) - 18*(3645*n^7 - 30618*n^6 + 96066*n^5 - 144585*n^4 + 103662*n^3 - 21834*n^2 - 10860*n + 4480)*a(n-2) + 2187*(n-2)*(n-1)*(3*n-7)*(3*n-5)*(9*n^3 - 27*n^2 + 3*n + 4)*a(n-3). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 3^(3*n+1) / (Pi*n^2*2^(n+1)). - Vaclav Kotesovec, Feb 25 2014

A358050 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(k*j,j) * binomial(k*(n-j),n-j).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 16, 4, 0, 1, 8, 39, 64, 5, 0, 1, 10, 72, 258, 256, 6, 0, 1, 12, 115, 664, 1719, 1024, 7, 0, 1, 14, 168, 1360, 6184, 11496, 4096, 8, 0, 1, 16, 231, 2424, 16265, 57888, 77052, 16384, 9, 0, 1, 18, 304, 3934, 35400, 195660, 543544, 517194, 65536, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2022

Keywords

Examples

			Square array begins:
  1, 1,    1,     1,     1,      1, ...
  0, 2,    4,     6,     8,     10, ...
  0, 3,   16,    39,    72,    115, ...
  0, 4,   64,   258,   664,   1360, ...
  0, 5,  256,  1719,  6184,  16265, ...
  0, 6, 1024, 11496, 57888, 195660, ...
		

Crossrefs

Column k=0-7 give: A000007, A001477(n+1), A000302, A006256, A078995, A079678, A079679, A079563.
Main diagonal gives A358145.
Cf. A358146.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(k*j, j)*binomial(k*(n-j), n-j));
    
  • PARI
    T(n, k) = sum(j=0, n, (k-1)^(n-j)*binomial(k*n+1, j));
    
  • PARI
    T(n, k) = sum(j=0, n, k^(n-j)*binomial((k-1)*n+j, j));

Formula

T(n,k) = Sum_{j=0..n} (k-1)^(n-j) * binomial(k*n+1,j).
T(n,k) = Sum_{j=0..n} k^(n-j) * binomial((k-1)*n+j,j).

A378504 Expansion of (Sum_{k>=0} binomial(3*k,k) * x^k)^4.

Original entry on oeis.org

1, 12, 114, 984, 8055, 63744, 492702, 3742704, 28053423, 208057260, 1529802648, 11168142048, 81041199876, 585045970992, 4204705925670, 30101448952032, 214756404746031, 1527491122906212, 10834911076417458, 76666402505673720, 541277205506059743
Offset: 0

Views

Author

Seiichi Manyama, Nov 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[Binomial[3*k, k] * x^k, {k, 0, nmax}]^4, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, binomial(3*k, k)*x^k)^4)

Formula

a(n) = Sum_{i+j+k+l=n, i,j,k,l >= 0} binomial(3*i,i) * binomial(3*j,j) * binomial(3*k,k) * binomial(3*l,l).
G.f.: B(x)^4 where B(x) is the g.f. of A005809.
4*a(n) - 27*a(n-1) = 3*A006256(n) + A005809(n) for n > 0.
Sum_{n >= 0} a(n) * z^n / (1+z)^(3*n) = (1+z)^4 / (1-2*z)^4. - Marko Riedel, Jul 22 2025
From Vaclav Kotesovec, Jul 23 2025: (Start)
Recurrence: 8*(n-1)*n*(2*n - 1)*a(n) = 6*(n-1)*(36*n^2 - 9*n - 5)*a(n-1) - 81*n*(3*n - 2)*(3*n - 1)*a(n-2).
a(n) ~ n * 3^(3*n+2) / 2^(2*n+4). (End)
Previous Showing 11-20 of 20 results.