cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A250176 Numbers n such that Phi_20(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

4, 9, 11, 16, 19, 26, 34, 45, 54, 70, 86, 91, 96, 101, 105, 109, 110, 119, 120, 126, 129, 139, 141, 149, 171, 181, 190, 195, 215, 229, 260, 276, 299, 305, 309, 311, 314, 319, 334, 339, 369, 375, 414, 420, 425, 444, 470, 479, 485, 506, 519, 534, 540, 550
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[20, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(20, n)); \\ Michel Marcus, Sep 29 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A258805 Primes of the form k^8 + 1.

Original entry on oeis.org

2, 257, 65537, 37588592026706177, 92170395205042177, 147578905600000001, 284936905588473857, 3503536769037500417, 11007531417600000001, 11763130845074473217, 47330370277129322497, 50024641296100000001, 76872571987558646017, 416806419029812551937
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A002496, A037896.
Cf. A006314 (associated n), A060890.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is n^8+1];
    
  • Mathematica
    Select[Range[500]^8 + 1, PrimeQ]
  • PARI
    is(n)=ispower(n-1,8) && isprime(n) \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n) = A060890(A006314(n)). - Michel Marcus, Jun 11 2015

A235983 Numbers n of the form p^8 + 1 (for prime p) such that n^8 + 1 is also prime.

Original entry on oeis.org

5764802, 146830437604322, 498311414318121122, 554786279519086052117762, 830149880552636599409282, 12628864335244989661982882, 33144490094099439467757602, 47203563969247823515902242, 179357590196404221918909122, 397370823547272766854136322, 2043714066708245412886790402, 139717795608648816763227344162
Offset: 1

Views

Author

Derek Orr, Jan 17 2014

Keywords

Comments

All numbers are congruent to 2 mod 20.

Examples

			33144490094099439467757602 = 1549^8 + 1 (1549 is prime) and 33144490094099439467757602^8 + 1 is prime, so 33144490094099439467757602 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[600]]^8+1,PrimeQ[#^8+1]&] (* Harvey P. Dale, Dec 21 2014 *)
  • Python
    import sympy
    from sympy import isprime
    {print(n**8+1) for n in range(10000) if isprime(n) if isprime((n**8+1)**8+1)}

A087738 Square array: T(n,k) gives n-th number a such that a^(2^k)+1 is prime (a generalized Fermat).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 6, 4, 2, 1, 10, 6, 4, 2, 1, 12, 10, 6, 4, 2, 1, 16, 14, 16, 118, 44, 30, 1, 18, 16, 20, 132, 74, 54, 102, 1, 22, 20, 24, 140, 76, 96, 162, 120, 1, 28, 24, 28, 152, 94, 112, 274, 190, 278, 1, 30, 26, 34, 208, 156, 114, 300, 234, 614, 46, 1, 36, 36, 46, 240, 158
Offset: 0

Views

Author

Jeppe Stig Nielsen, Oct 01 2003

Keywords

Examples

			{1}; {2,1}; {4,2,1}; ...
See the well-formed array on Gallot's page.
		

References

  • Harvey Dubner, J. Recr. Math., 18, 1986.

Crossrefs

A121978 Numbers k such that (2*k^2)^8 + 1 is prime.

Original entry on oeis.org

1, 11, 12, 14, 20, 27, 29, 30, 40, 65, 71, 85, 87, 89, 97, 104, 115, 147, 155, 175, 181, 189, 194, 244, 263, 264, 285, 286, 291, 303, 354, 360, 370, 376, 403, 407, 417, 423, 429, 433, 448, 479, 492, 493, 520, 570, 582, 588, 596, 617, 627, 629, 644, 654, 661
Offset: 1

Views

Author

Alexander Adamchuk, Sep 10 2006

Keywords

Comments

Corresponding primes of the form (2*k^2)^8 + 1 are {257, 11763130845074473217, 47330370277129322497, 557556054479199010817, 167772160000000000000001, ...}.
There are consecutive twin pairs {a(n),a(n+1)} = {11,12}, {29,30}, {263,264},{285,286}, {492,493}, {833,834}, ...

Crossrefs

Cf. A006314.

Programs

  • Mathematica
    Select[Range[1000],PrimeQ[(2*#1^2)^8+1]&]
    Select[Range[1000],PrimeQ[256#^16+1]&] (* Harvey P. Dale, Nov 04 2020 *)
  • PARI
    is(n)=isprime((2*n^2)^8+1) \\ Charles R Greathouse IV, Jun 13 2017

A217993 Smallest k such that k^(2^n) + 1 and (k+2)^(2^n) + 1 are both prime.

Original entry on oeis.org

2, 2, 2, 2, 74, 112, 2162, 63738, 13220, 54808, 3656570, 6992032, 125440, 103859114, 56414914, 87888966
Offset: 0

Views

Author

Michel Lagneau, Oct 17 2012

Keywords

Comments

a(15)=87888966 but a(14) is unknown. - Jeppe Stig Nielsen, Mar 17 2018
The prime pair related to a(14) was found four days ago, and today double checking has proved that they are indeed the first occurrence for n=14. - Jeppe Stig Nielsen, May 02 2018

Examples

			a(0) = 2 because 2^1+1 = 3 and 4^1+1 = 5 are prime;
a(1) = 2 because 2^2+1 = 5  and 4^2+1 = 17 are prime;
a(2) = 2 because 2^4+1 = 17  and 4^4+1 = 257 are prime;
a(3) = 2 because  2^8+1 = 257 and 4^8+1 = 65537 are prime.
		

Crossrefs

Programs

  • Maple
    for n from 0  to 5 do:ii:=0:for k from 2 by 2 to 10000 while(ii=0) do:if type(k^(2^n)+1,prime)=true and type((k+2)^(2^n)+1,prime)=true then ii:=1: printf ( "%d %d \n",n,k):else fi:od:od:

Formula

a(n) = A118539(n)-1. - Jeppe Stig Nielsen, Feb 27 2016

Extensions

a(13) from Jeppe Stig Nielsen, Mar 17 2018
a(14) and a(15) from Jeppe Stig Nielsen, May 02 2018

A242553 Least number k such that n^8 + k^8 is prime.

Original entry on oeis.org

1, 1, 10, 1, 6, 5, 12, 13, 16, 3, 24, 7, 2, 3, 8, 9, 4, 17, 4, 7, 2, 3, 20, 7, 8, 19, 10, 3, 10, 19, 14, 17, 32, 11, 8, 25, 6, 25, 40, 7, 10, 43, 16, 5, 68, 7, 30, 5, 8, 19, 58, 17, 26, 17, 2, 11, 10, 3, 4, 49, 6, 71, 22, 15, 14, 47, 30, 9, 2, 19, 6, 19, 6, 5, 28, 13, 2
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

If a(n) = 1, then n is in A006314.

Examples

			10^8+1^8 = 100000001 is not prime. 10^8+2^8 = 100000256 is not prime. 10^8+3^8 = 100006561 is prime. Thus, a(10) = 3.
		

Crossrefs

Programs

  • Mathematica
    lnk[n_]:=Module[{c=n^8,k=1},While[CompositeQ[c+k^8],k++];k]; Array[lnk,80] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 12 2020 *)
  • PARI
    a(n)=for(k=1,oo,if(ispseudoprime(n^8+k^8),return(k)));
  • Python
    import sympy
    from sympy import isprime
    def a(n):
      for k in range(10**4):
        if isprime(n**8+k**8):
          return k
    n = 1
    while n < 100:
      print(a(n))
      n += 1
    

A272137 Primes of the form k^16 + 1.

Original entry on oeis.org

2, 65537, 197352587024076973231046657, 808551180810136214718004658177, 1238846438084943599707227160577, 37157429083410091685945089785857, 123025056645280288014028950372089857, 150838912030874130174020868290707457
Offset: 1

Views

Author

Jaroslav Krizek, May 08 2016

Keywords

Comments

Corresponding values of k are in A006313.

Crossrefs

Cf. Sequences of numbers n such that n^(2^k)+1 is a prime p for k = 1-13: A005574 (k=1), A000068 (k=2), A006314 (k=3), A006313 (k=4), A006315 (k=5), A006316 (k=6), A056994 (k=7), A056995 (k=8), A057465 (k=9), A057002 (k=10), A088361 (k=11), A088362 (k=12), A226528 (k=13).
Corresponding sequences of primes p of the form n^(2^k)+1 for k = 1-4: A002496 (k=1), A037896 (k=2), A258805 (k=3), A272137 (k=4).

Programs

  • Magma
    [n^16 + 1: n in [1..700] | IsPrime(n^16 + 1)];
  • Maple
    A272137:=n->`if`(isprime(n^16+1), n^16+1, NULL): seq(A272137(n), n=1..200); # Wesley Ivan Hurt, May 11 2016

A217972 Numbers n such that n^8 + 1 and (n + 2)^8 + 1 are both prime.

Original entry on oeis.org

2, 240, 288, 508, 540, 680, 916, 1614, 2328, 2872, 2960, 2988, 3402, 3708, 3770, 4760, 4762, 4810, 5370, 5490, 5776, 5878, 6204, 7276, 7890, 8414, 8652, 9418, 9858, 11218, 11896, 12510, 13328, 13938, 14418, 15846, 16422, 17206, 18152, 18954, 19226, 20640
Offset: 1

Views

Author

Michel Lagneau, Oct 17 2012

Keywords

Examples

			2 is in the sequence because 2^8 + 1 = 257 and 4^8 + 1 = 65537 are both prime.
4 is not in the sequence because although 4^8 + 1 is a prime (as we saw above), 6^8 + 1 is not, being a multiple of 17.
		

Crossrefs

Cf. A006314.

Programs

  • Mathematica
    lst = {}; Do[p = n^8 + 1; q = (n + 2)^8 + 1; If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, n]], {n, 0, 21000}]; lst (* Lagneau *)
    Select[Range[10^5], PrimeQ[#^8 + 1] && PrimeQ[(# + 2)^8 + 1] &] (* Alonso del Arte, Oct 17 2012 *)
Previous Showing 31-40 of 42 results. Next