A069008
Let M denote the 6 X 6 matrix with rows /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = z(n).
Original entry on oeis.org
1, 4, 18, 74, 309, 1280, 5313, 22035, 91410, 379171, 1572857, 6524375, 27063881, 112264055, 465684247, 1931711700, 8012962189, 33238687760, 137877896315, 571933356551, 2372445281505, 9841175633650, 40822327332150, 169335704473650, 702423959724591
Offset: 0
Cf.
A006359,
A069007,
A069008,
A069009,
A070778,
A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).
-
a:= n->(Matrix(6, (i, j)->`if`(i+j>7, 0, 1))^n.<<[1$6][]>>)[3, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 14 2013
-
m = Table[ If[i + j <= 7, 1, 0], {i, 1, 6}, {j, 1, 6}]; mp[n_] := MatrixPower[m, n].m[[1]]; a[n_] := mp[n][[3]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jun 18 2013 *)
A069009
Let M denote the 6 X 6 matrix with rows / 1,1,1,1,1,1 / 1,1,1,1,1,0 / 1,1,1,1,0,0 / 1,1,1,0,0,0 / 1,1,0,0,0,0 / 1,0,0,0,0,0 / and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = t(n).
Original entry on oeis.org
1, 3, 15, 59, 250, 1030, 4283, 17752, 73658, 305513, 1267344, 5257031, 21806850, 90457205, 375227042, 1556484658, 6456477531, 26782210229, 111095686086, 460837670465, 1911607611040, 7929568022610, 32892759309540
Offset: 0
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Index entries for linear recurrences with constant coefficients, signature (3, 6, -4, -5, 1, 1).
Cf.
A006359,
A069007,
A069008,
A069009,
A070778,
A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).
Cf.
A120747 (m = 5: hendecagon or 11-gon)
-
nmax:=22: with(LinearAlgebra): M:=Matrix([[1,1,1,1,1,1], [1,1,1,1,1,0], [1,1,1,1,0,0], [1,1,1,0,0,0], [1,1,0,0,0,0], [1,0,0,0,0,0]]): v:= Vector[row]([1,1,1,1,1,1]): for n from 0 to nmax do b:=evalm(v&*M^n); a(n):=b[4] od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 03 2011
nmax:=24: m:=6: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 2 to nmax do a(n-2):=T(n,3) od: seq(a(n), n=0..nmax-2); # Johannes W. Meijer, Aug 03 2011
-
b = {1, -3, -6, 4, 5, -1, -1}; p[x_] := Sum[x^(n - 1)*b[[8 - n]], {n, 1, 7}] q[x_] := ExpandAll[x^6*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Sep 19 2006 *)
CoefficientList[Series[1/(1 - 3 x - 6 x^2 + 4 x^3 + 5 x^4 - x^5 - x^6), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 19 2015 *)
-
Vec(1/(1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)+O(x^33)) \\ Joerg Arndt, Sep 19 2015
A070778
Let M denote the 6 X 6 matrix = row by row /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = u(n).
Original entry on oeis.org
1, 2, 11, 41, 176, 721, 3003, 12439, 51623, 214103, 888173, 3684174, 15282475, 63393324, 262962987, 1090800411, 4524765831, 18769248040, 77856998326, 322959774150, 1339674254489, 5557122741105, 23051583675890, 95620617831960, 396645310086831, 1645330322871807
Offset: 0
Cf.
A006359,
A069007,
A069008,
A069009,
A070778,
A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).
-
I:=[1,2,11,41,176,721]; [n le 6 select I[n] else 3*Self(n-1)+6*Self(n-2)-4*Self(n-3)-5*Self(n-4)+Self(n-5)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Oct 10 2017
-
a:= n-> (Matrix(6, (i, j)->`if`(i+j>7, 0, 1))^n.<<[1$6][]>>)[5, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 14 2013
-
CoefficientList[Series[(x^2 + x - 1)/(x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1), {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 09 2017 *)
LinearRecurrence[{3, 6, -4, -5, 1, 1}, {1, 2, 11, 41, 176, 721}, 30] (* Vincenzo Librandi, Oct 10 2017 *)
A120747
Sequence relating to the 11-gon (or hendecagon).
Original entry on oeis.org
0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1
From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
0, 0, 0, 0, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
5, 9, 12, 14, 15, ...
15, 29, 41, 50, 55, ...
55, 105, 146, 175, 190, ...
190, 365, 511, 616, 671, ... (End)
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Jay Kappraff, Slavik Jablan, Gary W. Adamson and Radmila Sazdanovich, Golden Fields, Generalized Fibonacci Sequences and Chaotic Matrices, Forma, Vol. 19 No. 4, pp. 367-387, 2004.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, MR 1439165
- Eric Weisstein's World of Mathematics, Hendecagon.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-4,-1,1).
Cf.
A006358 (T(n+2,1) and T(n+1,5)),
A069006 (T(n+1,2)),
A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
-
R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
-
nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
-
def A120747_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
A120747_list(40) # G. C. Greubel, Nov 13 2022
A030113
Number of distributive lattices; also number of paths with n turns when light is reflected from 9 glass plates.
Original entry on oeis.org
1, 9, 45, 285, 1695, 10317, 62349, 377739, 2286648, 13846117, 83833256, 507596153, 3073376281, 18608642427, 112671254094, 682200039446, 4130572919575, 25009722123505, 151428434581516, 916866281219258
Offset: 0
Jacques Haubrich (jhaubrich(AT)freeler.nl)
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- Index entries for linear recurrences with constant coefficients, signature (5,10,-20,-15,21,7,-8,-1,1).
-
CoefficientList[Series[-(x^8 - x^7 -7 x^6 + 6 x^5 + 15 x^4 - 10 x^3 - 10 x^2 + 4 x + 1)/(x^9 - x^8 - 8 x^7 + 7 x^6 + 21 x^5 - 15 x^4 - 20 x^3 + 10 x^2 + 5 x - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 19 2013 *)
LinearRecurrence[{5,10,-20,-15,21,7,-8,-1,1},{1,9,45,285,1695,10317,62349,377739,2286648},30] (* Harvey P. Dale, Dec 13 2015 *)
-
k=9; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
A030115
Number of distributive lattices; also number of paths with n turns when light is reflected from 11 glass plates.
Original entry on oeis.org
1, 11, 66, 506, 3641, 26818, 196119, 1437799, 10532302, 77173602, 565424068, 4142793511, 30353430420, 222394369223, 1629443428021, 11938642758854, 87472304803355, 640893994357062, 4695716053827835, 34404674660198306
Offset: 0
Jacques Haubrich (jhaubrich(AT)freeler.nl)
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- Index entries for linear recurrences with constant coefficients, signature (6,15,-35,-35,56,28,-36,-9,10,1,-1).
-
CoefficientList[Series[-(x - 1) (x^3 - x^2 - 2 x + 1) (x^6 + x^5 - 6 x^4 - 6 x^3 + 8 x^2 + 8 x + 1)/(x^11 -x^10 - 10 x^9 + 9 x^8 + 36 x^7 - 28 x^6 - 56 x^5 + 35 x^4 + 35 x^3 - 15 x^2 - 6 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 19 2013 *)
-
k=11; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
A030114
Number of distributive lattices; also number of paths with n turns when light is reflected from 10 glass plates.
Original entry on oeis.org
1, 10, 55, 385, 2530, 17017, 113641, 760804, 5089282, 34053437, 227837533, 1524414737, 10199443436, 68241935348, 456589252304, 3054922560820, 20439707165252, 136756870048981, 915005341022187, 6122067418010887, 40961191948244094, 274060890253820561
Offset: 0
Jacques Haubrich (jhaubrich(AT)freeler.nl)
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- Index entries for linear recurrences with constant coefficients, signature (5,15,-20,-35,21,28,-8,-9,1,1).
-
CoefficientList[Series[-(x^9 + x^8 - 8 x^7 - 7 x^6 + 21 x^5 + 15 x^4 - 20 x^3 - 10 x^2 + 5 x + 1)/((x + 1) (x^3 + x^2 - 2 x - 1) (x^6 - x^5 - 6 x^4 + 6 x^3 8 x^2 - 8 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 19 2013 *)
-
k=10; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
A373424
Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(n) is the continued fraction (-1)^n/(~x - 1/(~x - ... 1/(~x - 1)))...) and where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 8, 1, 0, 1, 6, 15, 30, 31, 13, 1, 0, 1, 7, 21, 55, 85, 70, 21, 1, 0, 1, 8, 28, 91, 190, 246, 157, 34, 1, 0, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 0, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 0
Offset: 0
Generating functions of the rows:
gf0 = 1;
gf1 = -1/( x-1);
gf2 = 1/(-x-1/(-x-1));
gf3 = -1/( x-1/( x-1/( x-1)));
gf4 = 1/(-x-1/(-x-1/(-x-1/(-x-1))));
gf5 = -1/( x-1/( x-1/( x-1/( x-1/( x-1)))));
gf6 = 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1))))));
...
Array A(n, k) starts:
[0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[2] 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... A000045
[3] 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, ... A006356
[4] 1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, ... A006357
[5] 1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, ... A006358
[6] 1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, ... A006359
A000027,A000330, A085461, A244881, ...
A000217, A006322, A108675, ...
.
Triangle T(n, k) = A(n - k, k) starts:
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 2, 1, 0;
[4] 1, 3, 3, 1, 0;
[5] 1, 4, 6, 5, 1, 0;
[6] 1, 5, 10, 14, 8, 1, 0;
-
row := proc(n, len) local x, a, j, ser; if irem(n, 2) = 1 then
a := x - 1; for j from 1 to n do a := x - 1 / a od: a := a - x; else
a := -x - 1; for j from 1 to n do a := -x - 1 / a od: a := -a - x;
fi; ser := series(a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
A := (n, k) -> row(n, 12)[k+1]: # array form
T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
-
def Arow(n, len):
R. = PowerSeriesRing(ZZ, len)
if n == 0: return [1] + [0]*(len - 1)
x = -x if n % 2 else x
a = x + 1
for _ in range(n):
a = x - 1 / a
a = x - a if n % 2 else a - x
return a.list()
for n in range(7): print(Arow(n, 10))
Comments