cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A160970 Indices of square numbers that are also 18-gonal numbers.

Original entry on oeis.org

0, 1, 10, 44, 341, 1495, 11584, 50786, 393515, 1725229, 13367926, 58607000, 454115969, 1990912771, 15426575020, 67632427214, 524049434711, 2297511612505, 17802254205154, 78047762397956, 604752593540525, 2651326409917999, 20543785926172696, 90067050174814010
Offset: 1

Views

Author

Sture Sjöstedt, Jun 01 2009, Jul 02 2009

Keywords

Comments

Solving the Diophantine equation A051870(m) = m*(8*m-7) = k^2 leads to the entries.
k in the sequence and a list of associated m = 0, 1, 4, 16, 121, 529, 4096, 17956, 139129, 609961...

Crossrefs

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{0,34,0,-1},{1,10,44,340},23]] (* Ray Chandler, Aug 01 2015 *)
  • PARI
    is(n)=ispolygonal(n^2,18) \\ Charles R Greathouse IV, Feb 14 2013
    
  • PARI
    concat(0, Vec(x^2*(x+1)*(x^2+9*x+1)/((x^2-6*x+1)*(x^2+6*x+1)) + O(x^50))) \\ Colin Barker, Jun 24 2015

Formula

a(n) = 34*a(n-2) - a(n-4), n>5. - R. J. Mathar, Oct 04 2009
G.f.: x^2*(x+1)*(x^2 + 9*x + 1)/((x^2 - 6*x + 1)*(x^2 + 6*x + 1)). - Colin Barker, Oct 07 2012
For all values excepting the leading 0, a(n) = sqrt(8*A006452(n)^2 - 7)*A006452(n) = sqrt(A006451(n-1)*(A006451(n-1) + 1)/2 + 1)*(2*A006451(n-1) + 1). - Raphie Frank, Feb 11 2013

Extensions

0 added in front and extended by R. J. Mathar, Oct 04 2009

A173202 Solutions y of the Mordell equation y^2 = x^3 - 3a^2 + 1 for a = 0,1,2, ... (solutions x are given by the sequence A000466).

Original entry on oeis.org

0, 5, 58, 207, 500, 985, 1710, 2723, 4072, 5805, 7970, 10615, 13788, 17537, 21910, 26955, 32720, 39253, 46602, 54815, 63940, 74025, 85118, 97267, 110520, 124925, 140530, 157383, 175532, 195025, 215910, 238235, 262048, 287397, 314330, 342895
Offset: 1

Views

Author

Michel Lagneau, Feb 12 2010

Keywords

Comments

For many values of k for the equation y^2 = x^3 + k, all the solutions are known. For example, we have solutions for k=-2: (x,y) = (3,-5) and (3,5). A complete resolution for all integers k is unknown. Theorem: Let k be < -1, free of square factors, with k == 2 or 3 (mod 4). Suppose that the number of classes h(Q(sqrt(k))) is not divisible by 3. Then the equation y^2 = x^3 + k admits integer solutions if and only if k = 1 - 3a^2 or 1 - 3a^2 where a is an integer. In this case, the solutions are x = a^2 - k, y = a(a^2 + 3k) or -a(a^2 + 3k) (the first reference gives the proof of this theorem). With k = -1 - 3a^2, we obtain the solutions x = 4a^2 + 1, y = a(8a^2 + 3) or -a(8a^2 + 3). For the case k = 1 - 3a^2, we obtain the solution x = 4a^2 - 1 given by the sequence A000466.

Examples

			With a=3, x = 35 and y = 207, and then 207^2 = 35^2 - 26.
		

References

  • T. Apostol, Introduction to Analytic Number Theory, Springer, 1976
  • D. Duverney, Theorie des nombres (2e edition), Dunod, 2007, p.151

Crossrefs

Diophantine equations: see also Pellian equation: (A081233, A081234), (A081231, A082394), (A081232, A082393); Mordell equation: A053755, A173200; Diophantine equations: A006452, A006451, A006454.

Programs

  • Magma
    I:=[0, 5, 58, 207]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
  • Maple
    for a from 0 to 100 do : z := evalf(a*(8*a^2 - 3)) : print (z) :od :
  • Mathematica
    CoefficientList[Series[x*(5+38*x+5*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *)
    CoefficientList[Series[E^x (5 x + 24 x^2 + 8 x^3), {x, 0, 40}], x]*Table[n!, {n, 0, 40}] (* Stefano Spezia, Dec 04 2018 *)

Formula

y = a*(8*a^2 - 3).
a(n) = sqrt(A000466(n)^3 - A080663(n)). - Artur Jasinski, Nov 26 2011
From Colin Barker, Apr 26 2012: (Start)
a(n) = 8*n^3 - 24*n^2 + 21*n - 5.
G.f.: x^2*(5 + 38*x + 5*x^2)/(1 - x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 02 2012
E.g.f.: exp(x)*(5*x + 24*x^2 + 8*x^3). - Stefano Spezia, Dec 04 2018

A306561 Square numbers that are also central polygonal numbers (i.e., square numbers found in the Lazy Caterer's sequence).

Original entry on oeis.org

1, 4, 16, 121, 529, 4096, 17956, 139129, 609961, 4726276, 20720704, 160554241, 703893961, 5454117904, 23911673956, 185279454481, 812293020529, 6294047334436, 27594051024016, 213812329916329, 937385441796001, 7263325169820736, 31843510970040004
Offset: 1

Views

Author

Moshe Monk, Feb 23 2019

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 25); Coefficients(R!( x*(1+3*x-22*x^2+3*x^3+x^4)/((1-x)*(1-34*x^2 +x^4)) )); // G. C. Greubel, Apr 10 2019
    
  • Mathematica
    LinearRecurrence[{1,34,-34,-1,1}, {1,4,16,121,529}, 25] (* G. C. Greubel, Apr 10 2019 *)
  • PARI
    my(x='x+O('x^25)); Vec(x*(1+3*x-22*x^2+3*x^3+x^4)/((1-x)*(1-34*x^2 +x^4))) \\ G. C. Greubel, Apr 10 2019
    
  • PARI
    lista(nn) = {for (n=0, nn, if (issquare(cpn = (n^2 + n) / 2 + 1), print1(cpn, ", ")););} \\ Michel Marcus, Apr 11 2019
    
  • Sage
    a=(x*(1+3*x-22*x^2+3*x^3+x^4)/((1-x)*(1-34*x^2 +x^4))).series(x, 25).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Apr 10 2019

Formula

From Alois P. Heinz, Feb 23 2019: (Start)
G.f.: x*(1+3*x-22*x^2+3*x^3+x^4)/((1-x)*(1+6*x+x^2)*(1-6*x+x^2)).
a(n) = A006452(n)^2 for n >= 1.
{ A000124 } intersect { A000290 }. (End)

Extensions

More terms from Alois P. Heinz, Feb 23 2019

A358682 Numbers k such that 8*k^2 + 8*k - 7 is a square.

Original entry on oeis.org

1, 7, 43, 253, 1477, 8611, 50191, 292537, 1705033, 9937663, 57920947, 337588021, 1967607181, 11468055067, 66840723223, 389576284273, 2270616982417, 13234125610231, 77134136678971, 449570694463597, 2620290030102613, 15272169486152083, 89012726886809887, 518804191834707241
Offset: 1

Views

Author

Stefano Spezia, Nov 26 2022

Keywords

Comments

a(n) is the n-th almost cobalancing number of second type (see Tekcan and Erdem).

Examples

			a(2) = 7 is a term since 8*7^2 + 8*7 - 7 = 441 = 21^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-7,1},{1,7,43},24]

Formula

a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 3.
a(n) = (3*(3 - 2*sqrt(2))^n*(2 + sqrt(2)) + 3*(2 - sqrt(2))*(3 + 2*sqrt(2))^n - 4)/8.
O.g.f.: x*(1 + x^2)/((1 - x)*(1 - 6*x + x^2)).
E.g.f.: (3*(2 + sqrt(2))*(cosh(3*x - 2*sqrt(2)*x) + sinh(3*x - 2*sqrt(2)*x)) + 3*(2 - sqrt(2))*(cosh(3*x + 2*sqrt(2)*x) + sinh(3*x + 2*sqrt(2)*x)) - 4*(cosh(x) + sinh(x)) - 8)/8.
a(n) = 3*A011900(n) - 2 = 6*A053142(n) + 1. - Hugo Pfoertner, Nov 26 2022

A364319 a(n) = (A077446(n) + 1)/2 for n >= 0.

Original entry on oeis.org

0, 1, 3, 6, 16, 33, 91, 190, 528, 1105, 3075, 6438, 17920, 37521, 104443, 218686, 608736, 1274593, 3547971, 7428870, 20679088, 43298625, 120526555, 252362878, 702480240, 1470878641, 4094354883, 8572908966, 23863649056, 49966575153, 139087539451
Offset: 0

Views

Author

Wolfdieter Lang, Aug 15 2023

Keywords

Comments

a(n) and b(n) = A006452(n+1), for n >= 0, give the nonnegative solution of the equation binomial(a(n), 2) = b(n)^2 - 1.
This shows that the number of independent elements of an antisymmetric a(n) X a(n) matrix coincides with the number of independent elements of a traceless b(n) X b(n) matrix. The n = 0 case is trivial: 0 = 0. (The question about this coincidence was posed to W. L. by Martin Bordemann, Mar 03 1991.)

Examples

			The solutions (a(n), b(n)) begin:
  n: 0 1 2 3  4  5  6   7   8    9   10   11    12    13     14     15 ...
  ------------------------------------------------------------------------
  a: 0 1 3 6 16 33 91 190 528 1105 3075 6438 17920 37521 104443 218686 ...
  b: 1 1 2 4 11 23 64 134 373  781 2174 4552 12671 26531  73852 154634 ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 6, -6, -1, 1}, {0, 1, 3, 6, 16}, 31] (* Robert P. P. McKone, Aug 29 2023 *)

Formula

a(n) = 6*a(n-2) - a(n-4) - 2, for n >= 0, with a(-4) = -32, a(-3) = -15, a(-2) = -5, a(-1) = -2.
O.g.f.: G(x) = x*(1 + 2*x - 3*x^2 - 2*x^3)/((1 - x)*(1 - 6*x^2 + x^4)) = x*(1 + 2*x - 3*x^2 - 2*x^3)/((1 - x)*(1 - 2*x - x^2)*(1 + 2*x - x^2)).
Bisection: a(2*k) = (5*S(k-1, 6) + S(k-2, 6) + 1)/2 and a(2*k+1) = (S(k, 6) + 5*S(k-1, 6) + 1)/2, for k >= 0, with the Chebyshev polynomials S(n, x) (A049310) with S(-2, x) = -1, S(-1, x) = 0, evaluated at x = 6. S(n, 6) = A001109(n+1).
Bisection: a(2*k) = (1 + 8*q(k) - p(k))/2 and a(2*k+1) = (1 + 8*q(k) + p(k))/2, for k >= 0, with p(k) = A001541(k) = S(k, 6) - 3*S(k-1, 6) and q(k) = A001109(k) = S(k-1, 6).
E.g.f.: (cosh(x) - cosh(sqrt(2)*x)*(cosh(x) - 3*sinh(x)) + sinh(x) - sqrt(2)*(cosh(x) - 2*sinh(x))*sinh(sqrt(2)*x))/2. - Stefano Spezia, Aug 29 2023
Previous Showing 21-25 of 25 results.