cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 61 results. Next

A175553 Product of first k triangular numbers divided by the sum of first k triangular numbers is an integer.

Original entry on oeis.org

1, 4, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 96
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 26 2010

Keywords

Comments

Numbers k such that (1*3*6*10* ... *(k*(k+1)/2)) / (1+3+6+10+ ... +(k*(k+1)/2)) is an integer. What if, instead of triangular numbers, we use squares, 1*4*...*(k*k) / (1+4+...+k*k); odd numbers, 1*3*...*(2*k-1) / (1+3+...+(2*k-1)); or Fibonacci numbers, F(1)* ... *F(k) / (F(1)+ ... + F(k))?
It appears that the corresponding sequence for the Fibonacci numbers is given in A133653. - John W. Layman, Jul 10 2010
k > 6 is in this sequence if and only if k+2 is composite. - Robert Israel, Nov 04 2021

Examples

			For k=4 we have 1*3*6*10 /(1+3+6+10) = 9 so k=4 belongs to the sequence.
		

Crossrefs

Cf. A133653. - John W. Layman, Jul 10 2010

Programs

  • Maple
    A006472 := proc(n) n!*(n-1)!/2^(n-1) ; end proc:
    A000292 := proc(n) binomial(n+2,3) ; end proc:
    for n from 1 to 200 do a := A006472(n+1)/A000292(n) ; if type(a,'integer') then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jun 28 2010
  • Mathematica
    fQ[n_] := Mod[6n!(n - 1)!, (n + 2)2^n ] == 0; Select[Range@ 96, fQ@# &] (* Robert G. Wilson v, Jun 29 2010 *)

Formula

{k: A006472(k+1)/A000292(k) in Z}. - R. J. Mathar, Jun 28 2010

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, Jun 28 2010

A317059 a(n) is the number of time-dependent assembly trees satisfying the edge gluing rule for a complete graph on n vertices.

Original entry on oeis.org

1, 1, 3, 21, 255, 4815, 130095, 4763115, 226955925, 13646570175, 1010560060125, 90363456777825, 9599238270346725, 1194935000536101825, 172283712268118826375, 28481473075454845070625, 5351643310498951112521875, 1134140509146174954631081875, 269235074280949277622074328375
Offset: 1

Views

Author

Keywords

Comments

A time-dependent assembly tree for a connected graph G=(V, E) on n vertices is a rooted tree, each node of which is label a subset U of V and a nonnegative integer i such that:
1) each internal node has at least two children,
2) there are leaves labeled (v, 0) for each vertex v in V,
3) the label on the root is (V, m) for 1 <= m <= n-1,
4) for each node (U, i) with i
5) if (U, i) and (U', i') are adjacent nodes with U a subset of U', then i
6) for each 0 <= i <= m, there exists a node (U, i) with U a subset of V.
A time-dependent assembly tree is said to satisfy the edge gluing rule if each internal vertex v of G has exactly two children and if U_1 and U_2 are the labels of the children of internal vertex v, then there is an edge (v_1,v_2) in the edge set of G such that v_1 is in U_1 and v_2 is in U_2.
a(n) is also the number of labeled histories possible for n leaves if simultaneous bifurcations are allowed. a(n) is also the number of single-elimination sports tournament schedules possible for n teams if matches involve pairs of teams, arbitrarily many arenas are available, and labeled teams have been specified, but the bracket of matches has not been specified. - Noah A Rosenberg, Feb 20 2025

Crossrefs

Programs

  • Mathematica
    Nest[Function[{a, n}, Append[a, Sum[(n!/((2^j) j! (n - 2 j)!)) a[[n - j]], {j, Floor[n/2]}]]][#, Length@ # + 1] &, {1, 1}, 17] (* Michael De Vlieger, Jul 26 2018 *)
  • PARI
    lista(nn) = my(v = vector(nn)); for (n=1, nn, if (n<=2, v[n] = 1, v[n] = sum(j=1, n\2, (n!/((2^j)*j!*(n-2*j)!))*v[n-j]))); v; \\ Michel Marcus, Aug 08 2018
  • Sage
    @cached_function
    def TimeDepenEdgeComp(n):
        if n==1:
            return 1
        elif n==2:
            return 1
        else:
            return sum((factorial(n)/((2^j)*factorial(j)*factorial(n-2*j)))*TimeDepenEdgeComp(n-j) for j in range(1, n//2+1))
    print(",".join(str(TimeDepenEdgeComp(i)) for i in range(1, 20)))
    

Formula

a(n) = Sum_{j=1..floor(n/2)}(n!/((2^j)j!(n-2j)!))*a(n-j), a(1)=a(2)=1.

A330728 Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 7, 5, 5, 11, 16, 16, 27, 18, 61, 62, 272, 45, 123, 61, 1385, 105, 152, 272, 501, 211, 7936, 362
Offset: 1

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(n) multisystems for n = 3, 6, 8, 9, 10, 12 (commas and outer brackets elided):
  11  {1}{12}  {1}{23}  {{1}}{{1}{22}}  {{1}}{{1}{12}}  {{1}}{{1}{23}}
      {2}{11}  {2}{13}  {{11}}{{2}{2}}  {{11}}{{1}{2}}  {{11}}{{2}{3}}
               {3}{12}  {{1}}{{2}{12}}  {{1}}{{2}{11}}  {{1}}{{2}{13}}
                        {{12}}{{1}{2}}  {{12}}{{1}{1}}  {{12}}{{1}{3}}
                        {{2}}{{1}{12}}  {{2}}{{1}{11}}  {{1}}{{3}{12}}
                        {{2}}{{2}{11}}                  {{13}}{{1}{2}}
                        {{22}}{{1}{1}}                  {{2}}{{1}{13}}
                                                        {{2}}{{3}{11}}
                                                        {{23}}{{1}{1}}
                                                        {{3}}{{1}{12}}
                                                        {{3}}{{2}{11}}
		

Crossrefs

The version with distinct atoms is A006472.
The non-maximal version is A318846.
A tree version is A318848, with orderless version A318849.
The unlabeled version is A330664.
Final terms in each row of A330727.
See also A330675 (strongly normal), A330676 (normal), and A330726 (partition).

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

a(2^n) = A006472(n).
a(prime(n)) = A000111(n - 1).

A331956 Triangle T(n,k) read by rows: number of rooted chains of length k in set partitions of n labeled points.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 14, 31, 18, 0, 1, 51, 255, 385, 180, 0, 1, 202, 2066, 6110, 6945, 2700, 0, 1, 876, 17549, 90839, 188510, 171045, 56700, 0, 1, 4139, 159615, 1364307, 4603620, 7314650, 5507460, 1587600
Offset: 0

Author

S. R. Kannan, Rajesh Kumar Mohapatra, Feb 02 2020

Keywords

Comments

Also the number of chains of length k in unordered set partitions of {1,2,...,n} such that the first term of the chains is either {{1}, {2},...,{n}} or {{1,2,..,n}}.
Number of rooted k-level fuzzy equivalence matrices of order n.

Examples

			Triangle T(n,k) begins:
n\k | 0 1   2     3     4      5      6     7
----+-----------------------------------------
  0 | 1
  1 | 0 1
  2 | 0 1   1
  3 | 0 1   4     3
  4 | 0 1  14    31    18
  5 | 0 1  51   255   385    180
  6 | 0 1 202  2066  6110   6945   2700
  7 | 0 1 876 17549 90839 188510 171045 56700
  ...
The T(3,2) = 4 in the lattice of set partitions of {1,2,3}:
{{1},{2},{3}} < {{1,2},{3}},
{{1},{2},{3}} < {{1,3},{2}},
{{1},{2},{3}} < {{1},{2,3}},
{{1},{2},{3}} < {{1,2,3}}.
Or,
{{1,2,3}} > {{1,2},{3}},
{{1,2,3}} > {{1,3},{2}},
{{1,2,3}} > {{1},{2,3}},
{{1,2,3}} > {{1},{2},{3}}.
		

Crossrefs

Cf. A000007 (column k=0), A057427 (column k=1), A058692 (column k=2), A006472 (diagonal), A331957 (row sums).

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(k<0 or k>n, 0, `if`(k=1 or
          {n, k}={0}, 1, add(b(v, k-1, 1)*Stirling2(n, v), v=k..n-t)))
        end:
    T:= (n, k)-> b(n, k, 0):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Feb 09 2020
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[k < 0 || k > n, 0, If[k == 1 || Union@{n, k} == {0}, 1, Sum[b[v, k - 1, 1]*StirlingS2[n, v], {v, k, n - t}]]];
    T[n_, k_] := b[n, k, 0];
    Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten
  • PARI
    b(n, k, t) = {if (k < 0, return(0)); if ((n==0) && (k==0), return (1)); if ((k==1) && (n>0), return(1)); sum(v = k, n - t, if (k==1, 1, b(v, k-1, 1))*stirling(n, v, 2));}
    T(n, k) = b(n, k, 0);
    matrix(8,8,n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Feb 09 2020

Formula

T(0, 0) = 1, T(0, k) = 0 for k > 0 and T(n, 1) = 1 for n > 1.
T(n, k) = Sum_{i_(k-1)=k-1..n-1} (Sum_{i_(k-2)=k-2..i_(k-1) - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling2(n,i_(k-1)) * Stirling2(i_(k-1),i_(k-2)) * ... * Stirling2(i_3,i_2) * Stirling2(i_2,i_1)))...)), where 2 <= k <= n.

A155926 G.f. satisfies: A(x) = B(x*A(x)) where A(x) = Sum_{n>=0} a(n)*x^n/[n!*(n+1)!/2^n] and B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n].

Original entry on oeis.org

1, 1, 4, 37, 621, 16526, 640207, 34039027, 2379382609, 211619306134, 23337543447296, 3125553148981176, 499716551101393705, 94016487294245251308, 20561796731966531616954, 5172827581575899147920471
Offset: 0

Author

Paul D. Hanna, Jan 30 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2/3 + 37*x^3/18 + 621*x^4/180 + 16526*x^5/2700 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
B(x) = 1 + x + 1/3*x^2 + 1/18*x^3 + 1/180*x^4 +...+ x^n/[n!*(n+1)!/2^n] +... where
A(x) = B(x*A(x)) and B(x) = A(x/B(x)) ;
1/B(x) = 1 - x + 2*x^2/3 - 7*x^3/18 + 39*x^4/180 - 321*x^5/2700 +...+ (-1)^n*A103365(n)*x^n/[n!*(n+1)!/2^n] +...
Also, A(x) = C(x*A(x)^2) where:
C(x) = 1 + x - 2*x^2/3 + 19*x^3/18 - 379*x^4/180 + 12726*x^5/2700 +...+ A155927(n)*x^(n+1)/[n!*(n+1)!/2^n] +...
A(x)^2 = 1 + 2*x + 11*x^2/3 + 122*x^3/18 + 2302*x^4/180 + 66482*x^5/2700 +...
		

Programs

  • PARI
    {a(n)=local(F=sum(k=0,n,x^k/(k!*(k+1)!/2^k))+x*O(x^n));polcoeff(serreverse(x/F)/x,n)*n!*(n+1)!/2^n}
    
  • PARI
    {a(n)=local(N=matrix(n+1, n+1, m, j, if(m>=j, binomial(m-1, j-1)*binomial(m, j-1)/j))); sum(j=0, n, (N^n)[n+1, j+1])/(n+1)}

Formula

a(n) = A105558(n)/(n+1) = A105556(2n,n)/(n+1) = [N^(n+1)](n+1,1)/(n+1) for n>=0, where N^(n+1) is the (n+1)-th matrix power of the Narayana triangle N=A001263.
G.f.: A(x) = Series_Reversion[x/B(x)]/x where B(x) = A(x/B(x)) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n].
G.f. satisfies: A(x) = C(x*A(x)^2) and C(x) = A(x/C(x)^2) where C(x) is the g.f. of A155927.

A259459 From higher-order arithmetic progressions.

Original entry on oeis.org

1, 18, 360, 9000, 283500, 11113200, 533433600, 30862944000, 2121827400000, 171160743600000, 16020645600960000, 1722947613266880000, 211061082625192800000, 29223842209642080000000, 4542220046298654720000000, 787620956028186728448000000
Offset: 0

Author

N. J. A. Sloane, Jun 30 2015

Keywords

Comments

The expression "2 over n!" in the article is A006472(n+1). It is used in A259459 - A378234 (C_1 - C_3) on page 13. - Georg Fischer, Dec 06 2024

Crossrefs

Programs

  • Maple
    rV := proc(n,a,d)
            n*(n+1)/2*a+(n-1)*n*(n+1)/6*d;
    end proc:
    A259459 := proc(n)
            mul(rV(i,a,d),i=1..n+1) ;
            coeftayl(%,d=0,1) ;
            coeftayl(%,a=0,n) ;
    end proc:
    seq(A259459(n),n=1..15) ; # R. J. Mathar, Jul 14 2015
  • Mathematica
    rV[n_, a_, d_] := n(n+1)/2*a + (n-1)n(n+1)/6*d;
    A259459[n_] :=
       Product[rV[i, a, d], {i, 1, n+2}] //
       SeriesCoefficient[#, {d, 0, 1}]& //
       SeriesCoefficient[#, {a, 0, n+1}]&;
    Table[A259459[n], {n, 0, 14}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)

Formula

-2*n*a(n) +(n+3)*(n+2)^2*a(n-1)=0. - R. J. Mathar, Jul 15 2015
Conjectured g.f.: 3F0(4,3,3;;x/2). - R. J. Mathar, Aug 09 2015
a(n) = (n+3)!*(n+2)!/2^(n+2)*(n+1)*(n+2)/6. - Georg Fischer, Dec 06 2024

A128813 Triangle of coefficients of (x+1)*(x+3)*(x+6)*...*(x+n(n+1)/2).

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 10, 27, 18, 1, 20, 127, 288, 180, 1, 35, 427, 2193, 4500, 2700, 1, 56, 1162, 11160, 50553, 97200, 56700, 1, 84, 2730, 43696, 363033, 1512684, 2778300, 1587600, 1, 120, 5754, 141976, 1936089, 14581872, 57234924, 101606400, 57153600
Offset: 0

Author

Miklos Kristof, Apr 10 2007

Keywords

Examples

			(x+1)(x+3)(x+6)=x^3+10x^2+27x+18, so a(3,j)=1, 10, 27, 18.
The triangle begins:
  1
  1, 1
  1, 4,  3
  1, 10, 27, 18
  1, 20, 127, 288, 180
  1, 35, 427, 2193, 4500, 2700
  1, 56, 1162, 11160, 50553, 97200, 56700
		

Crossrefs

Cf. A006472 (right diagonal), A128814 (row sums).

Programs

  • Maple
    for n from 1 to 9 do b[n]:=n*(n+1)/2 od: a[0,0]:=1:a[1,0]:=1:a[1,1]:=1:for i from 2 to 9 do a[i,0]:=1:for j from 1 to i-1 do a[i,j]:=b[i]*a[i-1,j-1]+ a[i-1,j] od:a[i,i]:=b[i]*a[i-1,i-1] od: seq(seq(a[i,j],j=0..i),i=0..9);
  • Mathematica
    Flatten[Table[Reverse[CoefficientList[Expand[Times@@Table[x+(n(n+1))/2,{n,i}]],x]],{i,0,9}]] (* Harvey P. Dale, Nov 11 2011 *)
  • PARI
    row(n) = Vec(prod(i=1, n, (x+i*(i+1)/2))); \\ Michel Marcus, Mar 18 2023

Formula

a(0,0)=1, a(1,0)=1, a(1,1)=1, a(i,j)=i*(i+1)/2*a(i-1,j-1)+a(i-1,j), j=0..i-1.
a(i,i) = i*(i+1)/2*a(i-1,i-1).
a(n,n) = Product_{k=1..n} k*(k+1)/2 = A006472(n+1)
Sum_{m=0..n} a(n,m) = Product_{k=1..n} k*(k+1)/2+1 = A128814(n).

A132818 The matrix product A127773 * A001263 of infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 3, 6, 18, 6, 10, 60, 60, 10, 15, 150, 300, 150, 15, 21, 315, 1050, 1050, 315, 21, 28, 588, 2940, 4900, 2940, 588, 28, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 55, 2475, 29700, 138600, 291060
Offset: 1

Author

Gary W. Adamson, Sep 02 2007

Keywords

Examples

			First few rows of the triangle are:
1;
3, 3;
6, 18, 6;
10, 60, 60, 10;
15, 150, 300, 150, 15;
21, 315, 1050, 1050, 315, 21;
...
		

Crossrefs

Programs

  • Maple
    A132818 := proc(n,k)
        (n+1-k)*binomial(n+1,k)*binomial(n,k-1)/2 ;
    end proc: # R. J. Mathar, Jul 29 2015

Formula

T(n,k) = A000217(n) * A001263(n,k).
Let a(n) = A006472(n), the 'triangular' factorial numbers. Then a(n)/(a(k)*a(n-k)) produces the present triangle (with a different offset). - Peter Bala, Dec 07 2011
T(n,k) = 1/2*(n+1-k)*C(n+1,k)*C(n,k-1), for n,k >= 1. O.g.f.: x*y/((1-x-x*y)^2 - 4*x^2*y)^(3/2) = x*y + x^2*(3*y + 3*y^2) + x^3*(6*y + 18*y^2 + 6*y^3) + .... Cf. A008459 with o.g.f.: x*y/((1-x-x*y)^2 - 4*x^2*y)^(1/2). Sum {k = 1..n-1} T(n,k)*2^(n-k) = A002695(n). - Peter Bala, Apr 10 2012

Extensions

Corrected by R. J. Mathar, Jul 29 2015

A184358 a(n) = (n+1)!^2/2^n.

Original entry on oeis.org

1, 2, 9, 72, 900, 16200, 396900, 12700800, 514382400, 25719120000, 1556006760000, 112032486720000, 9466745127840000, 927741022528320000, 104370865034436000000, 13359470724407808000000, 1930443519676928256000000, 312731850187662377472000000
Offset: 0

Author

Paul D. Hanna, Jan 16 2011

Keywords

Comments

Self-convolution of A184359.

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 72*x^3 + 900*x^4 + 16200*x^5 +...
A(x)^(1/2) = 1 + x + 4*x^2 + 32*x^3 + 410*x^4 + 7562*x^5 + 188736*x^6 +...+ A184359(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n + 1)!^2/2^n; Array[a, 20, 0] (* Amiram Eldar, Jun 25 2022 *)
  • PARI
    {a(n)=(n+1)!^2/2^n}

Formula

From Amiram Eldar, Jun 25 2022: (Start)
Sum_{n>=0} 1/a(n) = (BesselI(0, 2*sqrt(2)) - 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (1 - BesselJ(0, 2*sqrt(2)))/2. (End)

A259460 From higher-order arithmetic progressions.

Original entry on oeis.org

4, 220, 10500, 535500, 30870000, 2044828800, 156029328000, 13673998800000, 1369285948800000, 155756276676000000, 20005336176265440000, 2884501462544301600000, 464334381775424160000000, 83021688624014300160000000, 16408769917253890176000000000, 3569104362241728159962112000000, 850861011640079911341911040000000
Offset: 0

Author

N. J. A. Sloane, Jun 30 2015

Keywords

Comments

The expression "2 over n!" in the article is A006472(n+1). It is used in C_1, C_2, C_3 (A259459, A259460, A378234) on page 13. A_2 is A000914. - Georg Fischer, Dec 06 2024

Crossrefs

Programs

  • Maple
    rV := proc(n,a,d)
        n*(n+1)/2*a+(n-1)*n*(n+1)/6*d;
    end proc:
    A259460 := proc(n)
        mul(rV(i,a,d),i=1..n+2) ;
        coeftayl(%,d=0,2) ;
        coeftayl(%,a=0,n) ;
    end proc:
    seq(A259460(n),n=1..18) ; # R. J. Mathar, Jul 14 2015
  • Mathematica
    rV[n_, a_, d_] := n (n + 1)/2*a + (n - 1) n (n + 1)/6*d;
    A259460[n_] :=
       Product[rV[i, a, d], {i, 1, n + 3}] //
       SeriesCoefficient[#, {d, 0, 2}] & //
       SeriesCoefficient[#, {a, 0, n + 1}] & ;
    Table[A259460[n], {n, 0, 16}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)

Formula

From Georg Fischer, Dec 06 2024: (Start)
a(n) = (n+4)!*(n+3)!/2^(n+3)/9 * (n+2)*(n+1)*(n+3)*(3*n+8)/24.
D-finite with recurrence: 2*n*(3*n+5)*a(n) - (n+3)^2*(n+4)*(3*n+8)*a(n-1) = 0. (End)

Extensions

Typos in data corrected by Jean-François Alcover, Apr 27 2023
Previous Showing 21-30 of 61 results. Next