cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 61 results. Next

A264379 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 2,-2 -1,0 -1,2 1,0 or 0,-1.

Original entry on oeis.org

1, 2, 0, 4, 1, 1, 6, 6, 13, 0, 9, 9, 80, 25, 1, 15, 61, 385, 441, 128, 0, 25, 121, 2345, 3778, 3249, 347, 1, 40, 544, 14329, 60858, 63575, 22484, 1343, 0, 64, 1357, 88264, 711068, 1742881, 828400, 156293, 4172, 1, 104, 5100, 538417, 9407584, 45132986, 48714516
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2015

Keywords

Comments

Table starts
.1.....2.......4..........6.............9..............15.................25
.0.....1.......6..........9............61.............121................544
.1....13......80........385..........2345...........14329..............88264
.0....25.....441.......3778.........60858..........711068............9407584
.1...128....3249......63575.......1742881........45132986.........1187897216
.0...347...22484.....828400......48714516......2546661201.......135926940964
.1..1343..156293...11888603....1363452981....149731056598.....16353452350876
.0..4172.1097881..163298870...38221084820...8620411258657...1906883090233889
.1.14711.7657324.2275569624.1068788896516.499872831041401.225710195773223581

Examples

			Some solutions for n=4 k=4
..1..2..5..4..9....1..6..5..4..7....1..2..5..6..9....5..2..3..6..7
..0..7.10..3.14....0.11..2..3.14....0..7.10.11.14....0..1.10..9..4
.11..6.15.16.17...15.16.13..8..9...15..3..4..8.17...11.12.13.14.17
.20..8.18.21.22...10.17.20.21.24...16.21.20.13.24...20..8.22.21.24
.12.13.23.24.19...12.22.23.18.19...12.22.23.18.19...15.16.23.18.19
		

Crossrefs

Row 1 is A006498(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-2)
k=2: [order 20]
k=3: [order 64]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-3) +a(n-4)
n=2: [order 10]
n=3: [order 70]
n=4: [order 81] for n>85

A157897 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 1, 2, 0, 1, 4, 3, 3, 2, 0, 1, 5, 6, 5, 6, 0, 1, 1, 6, 10, 9, 12, 3, 3, 0, 1, 7, 15, 16, 21, 12, 6, 3, 0, 1, 8, 21, 27, 35, 30, 14, 12, 0, 1, 1, 9, 28, 43, 57, 61, 35, 30, 6, 4, 0, 1, 10, 36, 65, 91, 111, 81, 65, 30, 10, 4, 0, 1, 11, 45, 94, 142, 189, 169, 135, 90, 30, 20, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, Mar 08 2009

Keywords

Comments

T(n, k) is the number of tilings of an n-board that use k (1/2, 1)-fences and n-k squares. A (1/2, 1)-fence is a tile composed of two pieces of width 1/2 separated by a gap of width 1. (Result proved in paper by K. Edwards - see the links section.) - Michael A. Allen, Apr 28 2019
T(n, k) is the (n, n-k)-th entry in the (1/(1-x^3), x*(1+x)/(1-x^3)) Riordan array. - Michael A. Allen, Mar 11 2021

Examples

			First few rows of the triangle are:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  0,  1;
  1,  3,  1,  2,  0;
  1,  4,  3,  3,  2,  0;
  1,  5,  6,  5,  6,  0,  1;
  1,  6, 10,  9, 12,  3,  3,  0;
  1,  7, 15, 16, 21, 12,  6,  3,  0;
  1,  8, 21, 27, 35, 30, 14, 12,  0,  1;
  ...
T(9,3) = 27 = T(8,3) + T(7,2) + T(6,0) = 16 + 10 + 1.
		

Crossrefs

Cf. A000073 (row sums), A006498, A120415.
Other triangles related to tiling using fences: A059259, A123521, A335964.

Programs

  • Magma
    function T(n,k) // T = A157897
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return 1;
      else return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 01 2022
    
  • Mathematica
    T[n_,k_]:= If[nMichael A. Allen, Apr 28 2019 *)
  • SageMath
    def T(n,k): # T = A157897
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        else: return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3)
    flatten([[T(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Sep 01 2022

Formula

T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
Sum_{k=0..n} T(n, k) = A000073(n+2). - Reinhard Zumkeller, Jun 25 2009
From G. C. Greubel, Sep 01 2022: (Start)
T(n, k) = T(n-1, k) + T(n-2, k-1) + T(n-3, k-3), with T(n, 0) = 1.
T(n, n) = A079978(n).
T(n, n-1) = A087508(n), n >= 1.
T(n, 1) = A001477(n-1).
T(n, 2) = A161680(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A120415(n). (End)

Extensions

Name clarified by Michael A. Allen, Apr 28 2019
Definition improved by Michael A. Allen, Mar 11 2021

A013979 Expansion of 1/(1 - x^2 - x^3 - x^4) = 1/((1 + x)*(1 - x - x^3)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, 24, 36, 52, 77, 112, 165, 241, 354, 518, 760, 1113, 1632, 2391, 3505, 5136, 7528, 11032, 16169, 23696, 34729, 50897, 74594, 109322, 160220, 234813, 344136, 504355, 739169, 1083304, 1587660, 2326828, 3410133, 4997792, 7324621
Offset: 0

Keywords

Comments

For n>0, number of compositions (ordered partitions) of n into 2's, 3's and 4's. - Len Smiley, May 08 2001
Diagonal sums of trinomial triangle A071675 (Riordan array (1, x*(1+x+x^2))). - Paul Barry, Feb 15 2005
For n>1, a(n) is number of compositions of n-2 into parts 1 and 2 with no 3 consecutive 1's. For example: a(7) = 5 because we have: 2+2+1, 2+1+2, 1+2+2, 1+2+1+1, 1+1+2+1. - Geoffrey Critzer, Mar 15 2014
In the same way [per 2nd comment for A006498, by Sreyas Srinivasan] that the sum of any two alternating terms (terms separated by one term) of A006498 produces a term from A000045 (the Fibonacci sequence), so it could therefore be thought of as a "metaFibonacci," the sum of any two (nonalternating) terms of this sequence produces a term from A000930 (Narayana’s cows), so this sequence could analogously be called "meta-Narayana’s cows" (e.g. 4+5=9, 5+8=13, 8+11=19, 11+17=28). - Michael Cohen and Yasuyuki Kachi, Jun 13 2024

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 5*x^7 + 8*x^8 + 11*x^9 + ...
		

Crossrefs

Cf. A060945 (Ordered partitions into 1's, 2's and 4's).
First differences of A023435.

Programs

  • Haskell
    a013979 n = a013979_list !! n
    a013979_list = 1 : 0 : 1 : 1 : zipWith (+) a013979_list
       (zipWith (+) (tail a013979_list) (drop 2 a013979_list))
    -- Reinhard Zumkeller, Mar 23 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1+x)*(1-x-x^3)) )); // G. C. Greubel, Jul 17 2023
    
  • Mathematica
    a[n_]:= If[n<0, SeriesCoefficient[x^4/(1 +x +x^2 -x^4), {x, 0, -n}], SeriesCoefficient[1/(1 -x^2 -x^3 -x^4), {x,0,n}]]; (* Michael Somos, Jun 20 2015 *)
    LinearRecurrence[{0,1,1,1}, {1,0,1,1}, 50] (* G. C. Greubel, Jul 17 2023 *)
  • SageMath
    @CachedFunction
    def b(n): return 1 if (n<3) else b(n-1) + b(n-3) # b = A000930
    def A013979(n): return ((-1)^n +2*b(n) -b(n-1) +b(n-2) -int(n==1))/3
    [A013979(n) for n in (0..50)] # G. C. Greubel, Jul 17 2023

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..floor(n/2)} C(k, 2i+3k-n)*C(2i+3k-n, i). - Paul Barry, Feb 15 2005
a(n) = a(n-4) + a(n-3) + a(n-2). - Jon E. Schoenfield, Aug 07 2006
a(n) + a(n+1) = A000930(n+1). - R. J. Mathar, Mar 14 2011
a(n) = (1/3)*(A000930(n) + A097333(n-2) + (-1)^n), n>1. - Ralf Stephan, Aug 15 2013
a(n) = (-1)^n * A077889(-4-n) = A107458(n+4) for all n in Z. - Michael Somos, Jun 20 2015
a(n) = Sum_{i=0..floor(n/2)} A078012(n-2*i). - Paul Curtz, Aug 18 2021
a(n) = (1/3)*((-1)^n + 2*b(n) - b(n-1) + b(n-2) - [n=1]), where b(n) = A000930(n). - G. C. Greubel, Jul 17 2023

A207426 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 114, 81, 14, 25, 225, 361, 351, 196, 21, 40, 625, 1425, 1521, 1162, 441, 31, 64, 1600, 5625, 8463, 6889, 3633, 961, 46, 104, 4096, 20550, 47089, 55361, 29929, 11067, 2116, 68, 169, 10816, 75076, 241087, 444889, 341329
Offset: 1

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Table starts
..2....4.....6......9.......15........25.........40...........64...........104
..4...16....36.....81......225.......625.......1600.........4096.........10816
..6...36...114....361.....1425......5625......20550........75076........282494
..9...81...351...1521.....8463.....47089.....241087......1234321.......6520459
.14..196..1162...6889....55361....444889....3210938.....23174596.....174570082
.21..441..3633..29929...341329...3892729...39698733....404854641....4315250265
.31..961.11067.127449..2048823..32936121..474552171...6837470721..102807481767
.46.2116.33994.546121.12436631.283215241.5755114104.116947584576.2485504480392

Examples

			Some solutions for n=4 k=3
..0..1..1....1..1..0....0..1..1....1..1..0....1..0..0....0..1..1....1..1..1
..1..1..0....0..0..1....0..1..1....1..0..1....0..0..1....1..0..0....1..1..1
..1..1..1....0..1..1....0..1..1....1..0..1....1..0..1....1..0..1....1..1..1
..1..0..1....0..1..1....0..1..1....0..0..1....1..0..0....1..0..1....1..1..1
		

Crossrefs

Column 1 is A038718(n+2)
Column 2 is A207069
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)

A207729 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 78, 81, 14, 25, 225, 169, 189, 196, 21, 40, 625, 611, 441, 490, 441, 31, 64, 1600, 2209, 2163, 1225, 1113, 961, 46, 104, 4096, 6016, 10609, 8575, 2809, 2449, 2116, 68, 169, 10816, 16384, 33063, 60025, 27931, 6241, 5474, 4624
Offset: 1

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Table starts
..2....4....6.....9.....15......25.......40.......64........104.........169
..4...16...36....81....225.....625.....1600.....4096......10816.......28561
..6...36...78...169....611....2209.....6016....16384......51840......164025
..9...81..189...441...2163...10609....33063...103041.....418263.....1697809
.14..196..490..1225...8575...60025...211680...746496....4078944....22287841
.21..441.1113..2809..27931..277729..1029231..3814209...27996255...205492225
.31..961.2449..6241..88243.1247689..4799749.18464209..184732327..1848226081
.46.2116.5474.14161.288813.5890329.23473944.93547584.1307760792.18282014521

Examples

			Some solutions for n=4 k=3
..0..0..1....1..1..0....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0
..1..1..1....1..1..1....1..0..1....0..0..1....0..1..1....1..1..1....1..1..0
..0..0..1....1..0..0....1..0..0....0..0..1....0..1..1....1..1..0....1..0..0
..0..0..1....1..0..0....1..0..0....1..1..0....1..1..1....1..0..0....1..0..0
		

Crossrefs

Column 1 is A038718(n+2)
Column 2 is A207069
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)

A207693 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 60, 81, 13, 25, 225, 100, 144, 169, 18, 40, 625, 240, 256, 312, 324, 25, 64, 1600, 576, 768, 576, 612, 625, 34, 104, 4096, 1296, 2304, 1872, 1156, 1250, 1156, 46, 169, 10816, 2916, 5856, 6084, 4216, 2500, 2516, 2116, 62, 273
Offset: 1

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Table starts
..2....4....6....9....15.....25.....40......64.....104......169.......273
..4...16...36...81...225....625...1600....4096...10816....28561.....74529
..6...36...60..100...240....576...1296....2916....6804....15876.....36288
..9...81..144..256...768...2304...5856...14884...42700...122500....320600
.13..169..312..576..1872...6084..18564...56644..177548...556516...1724752
.18..324..612.1156..4216..15376..50096..163216..578528..2050624...6804864
.25..625.1250.2500.10000..40000.145200..527076.2056032..8020224..29854944
.34.1156.2516.5476.24420.108900.453420.1887876.8263236.36168196.155101060

Examples

			Some solutions for n=4 k=3
..1..1..1....1..0..0....1..0..1....1..1..0....0..1..1....0..1..1....1..1..1
..1..1..0....0..0..1....0..1..1....0..0..1....1..0..1....1..1..0....0..0..1
..0..0..1....1..0..1....1..1..0....1..0..1....1..1..0....1..0..1....1..1..0
..1..0..1....1..0..0....1..0..0....1..0..0....0..0..1....0..1..1....0..1..1
		

Crossrefs

Column 1 is A171861(n+1)
Column 2 is A207025
Column 3 is A207584
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)

A207908 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 0 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 102, 81, 13, 25, 225, 289, 261, 169, 18, 40, 625, 1071, 841, 611, 324, 25, 64, 1600, 3969, 4089, 2209, 1278, 625, 34, 104, 4096, 13230, 19881, 13865, 5041, 2625, 1156, 46, 169, 10816, 44100, 80511, 87025, 39831, 11025
Offset: 1

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Table starts
..2....4....6.....9.....15......25.......40........64........104.........169
..4...16...36....81....225.....625.....1600......4096......10816.......28561
..6...36..102...289...1071....3969....13230.....44100.....153090......531441
..9...81..261...841...4089...19881....80511....326041....1428071.....6255001
.13..169..611..2209..13865...87025...417425...2002225...10896915....59305401
.18..324.1278..5041..39831..314721..1726758...9474084...62431074...411400089
.25..625.2625.11025.110775.1113025..6835345..41977441..336253621..2693506201
.34.1156.5134.22801.289467.3674889.24832818.167806116.1627138986.15777620881

Examples

			Some solutions for n=4 k=3
..0..1..1....1..0..0....1..0..0....0..0..1....0..0..1....0..1..1....0..0..1
..1..1..0....0..0..1....0..1..1....1..0..0....1..0..1....1..1..0....1..1..1
..0..1..1....1..1..0....1..0..0....0..1..1....0..1..1....0..0..1....0..0..1
..1..0..0....0..0..1....0..0..1....1..0..0....0..0..1....1..0..0....1..0..0
		

Crossrefs

Column 1 is A171861(n+1)
Column 2 is A207025
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207704

A207928 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 15, 81, 72, 100, 16, 25, 225, 144, 240, 256, 26, 40, 625, 360, 576, 704, 676, 42, 64, 1600, 900, 1872, 1936, 2080, 1764, 68, 104, 4096, 2160, 6084, 7744, 6400, 6216, 4624, 110, 169, 10816, 5184, 18096, 30976, 29760, 21904
Offset: 1

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Table starts
..2....4.....6.....9.....15......25.......40........64.......104........169
..4...16....36....81....225.....625.....1600......4096.....10816......28561
..6...36....72...144....360.....900.....2160......5184.....12528......30276
.10..100...240...576...1872....6084....18096.....53824....165648.....509796
.16..256...704..1936...7744...30976...111584....401956...1513992....5702544
.26..676..2080..6400..29760..138384...592968...2540836..11151624...48944016
.42.1764..6216.21904.126688..732736..3773248..19430464.105642128..574369156
.68.4624.18496.73984.520608.3663396.22906752.143233024.955190016.6369955344

Examples

			Some solutions for n=9 k=3
..0..0..1....0..0..1....0..1..1....1..0..0....1..0..0....0..0..1....0..0..1
..0..1..1....1..1..1....0..0..1....1..0..0....0..0..1....1..1..1....0..0..1
..1..1..0....1..0..0....1..0..0....0..1..1....1..1..0....1..1..0....1..1..0
..1..0..0....0..1..1....0..1..1....0..0..1....0..1..1....0..0..1....0..1..1
..0..1..1....1..1..0....1..1..1....1..1..0....0..0..1....1..0..1....1..0..0
..0..1..1....0..0..1....1..0..0....1..0..0....1..1..0....1..1..0....0..1..1
..1..0..0....1..0..0....0..1..1....0..1..1....0..1..1....0..1..1....1..0..1
..1..1..0....1..1..1....1..1..1....1..0..0....0..0..1....0..0..1....1..0..0
..0..1..1....0..1..1....1..0..0....1..1..1....1..0..0....1..1..0....0..1..1
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Column 3 is A207840
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)

A208108 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 78, 81, 14, 25, 225, 169, 171, 196, 22, 40, 625, 611, 361, 406, 484, 35, 64, 1600, 2209, 1805, 841, 990, 1225, 56, 104, 4096, 6016, 9025, 6235, 2025, 2485, 3136, 90, 169, 10816, 16384, 25555, 46225, 22995, 5041, 6328, 8100
Offset: 1

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Table starts
..2....4....6.....9.....15.......25.......40.......64........104.........169
..4...16...36....81....225......625.....1600.....4096......10816.......28561
..6...36...78...169....611.....2209.....6016....16384......51840......164025
..9...81..171...361...1805.....9025....25555....72361.....292941.....1185921
.14..196..406...841...6235....46225...134160...389376....2189616....12313081
.22..484..990..2025..22995...261121...768544..2262016...18608992...153091129
.35.1225.2485..5041..89815..1600225..4747545.14085009..176312187..2207026441
.56.3136.6328.12769.361261.10220809.30461016.90782784.1769397240.34486347025

Examples

			Some solutions for n=10 k=3
..1..0..0....0..0..1....1..0..1....1..1..0....1..0..0....0..1..1....0..0..1
..0..0..1....1..0..0....0..1..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..1..1....0..0..1....1..1..0....1..1..0....0..1..1....1..0..1
..0..1..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..1..1....0..1..1....1..1..0....1..0..0....0..1..1....1..0..1
..0..1..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..0..1....1..1..1....1..1..0....1..0..0....0..1..1....1..1..1
..0..0..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..1..0....0..1..1....1..1..1....1..1..0....1..0..0....0..1..1....0..0..1
..0..0..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..1..1
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207730

A335964 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-3,k-1) + T(n-4,k-2) + delta(n,0)*delta(k,0), T(n,k<0) = T(n

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 2, 0, 0, 0, 1, 4, 4, 0, 0, 0, 0, 1, 5, 7, 2, 0, 0, 0, 0, 1, 6, 11, 6, 1, 0, 0, 0, 0, 1, 7, 16, 13, 3, 0, 0, 0, 0, 0, 1, 8, 22, 24, 9, 0, 0, 0, 0, 0, 0, 1, 9, 29, 40, 22, 3, 0, 0, 0, 0, 0, 0
Offset: 0

Author

Michael A. Allen, Jul 01 2020

Keywords

Comments

T(n,k) is the number of tilings of an n-board (a board with dimensions n X 1) using k (1,1)-fence tiles and n-2k square tiles. A (w,g)-fence tile is composed of two tiles of width w separated by a gap of width g.
Sum of n-th row = A006498(n).
T(2*j+r,k) is the coefficient of x^k in (f(j,x))^(2-r)*(f(j+1,x))^r for r=0,1 where f(n,x) is one form of a Fibonacci polynomial defined by f(n+1,x) = f(n,x) + x*f(n-1,x) where f(0,x)=1 and f(n<0,x)=0. - Michael A. Allen, Oct 02 2021

Examples

			Triangle begins:
  1;
  1,  0;
  1,  0,  0;
  1,  1,  0,  0;
  1,  2,  1,  0,  0;
  1,  3,  2,  0,  0,  0;
  1,  4,  4,  0,  0,  0,  0;
  1,  5,  7,  2,  0,  0,  0,  0;
  1,  6, 11,  6,  1,  0,  0,  0,  0;
  1,  7, 16, 13,  3,  0,  0,  0,  0,  0;
  1,  8, 22, 24,  9,  0,  0,  0,  0,  0,  0;
  1,  9, 29, 40, 22,  3,  0,  0,  0,  0,  0,  0;
  ...
		

Crossrefs

Other triangles related to tiling using fences: A059259, A123521, A157897, A158909.
Cf. A006498 (row sums), A011973, A348445.

Programs

  • Mathematica
    T[n_,k_]:=If[n
    				
  • PARI
    TT(n,k) = if (nA059259
    T(n,k) = TT(n-k,k);
    \\ matrix(7,7,n,k, T(n-1,k-1)) \\ Michel Marcus, Jul 18 2020

Formula

T(n,k) = A059259(n-k,k).
From Michael A. Allen, Oct 02 2021: (Start)
G.f.: 1/((1 + x^2*y)(1 - x - x^2*y)) in the sense that T(n,k) is the coefficient of x^n*y^k in the expansion of the g.f.
T(n,0) = 1.
T(n,1) = n-2 for n>1.
T(n,2) = binomial(n-4,2) + n - 3 for n>3.
T(n,3) = binomial(n-6,3) + 2*binomial(n-5,2) for n>5.
T(4*m-3,2*m-2) = T(4*m-1,2*m-1) = m for m>0.
T(2*n+1,n-k) = A158909(n,k). (End)
T(n,k) = A348445(n-2,k) for n>1.
Previous Showing 11-20 of 61 results. Next