1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 1, 2, 0, 1, 4, 3, 3, 2, 0, 1, 5, 6, 5, 6, 0, 1, 1, 6, 10, 9, 12, 3, 3, 0, 1, 7, 15, 16, 21, 12, 6, 3, 0, 1, 8, 21, 27, 35, 30, 14, 12, 0, 1, 1, 9, 28, 43, 57, 61, 35, 30, 6, 4, 0, 1, 10, 36, 65, 91, 111, 81, 65, 30, 10, 4, 0, 1, 11, 45, 94, 142, 189, 169, 135, 90, 30, 20, 0, 1
Offset: 0
First few rows of the triangle are:
1;
1, 0;
1, 1, 0;
1, 2, 0, 1;
1, 3, 1, 2, 0;
1, 4, 3, 3, 2, 0;
1, 5, 6, 5, 6, 0, 1;
1, 6, 10, 9, 12, 3, 3, 0;
1, 7, 15, 16, 21, 12, 6, 3, 0;
1, 8, 21, 27, 35, 30, 14, 12, 0, 1;
...
T(9,3) = 27 = T(8,3) + T(7,2) + T(6,0) = 16 + 10 + 1.
A013979
Expansion of 1/(1 - x^2 - x^3 - x^4) = 1/((1 + x)*(1 - x - x^3)).
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, 24, 36, 52, 77, 112, 165, 241, 354, 518, 760, 1113, 1632, 2391, 3505, 5136, 7528, 11032, 16169, 23696, 34729, 50897, 74594, 109322, 160220, 234813, 344136, 504355, 739169, 1083304, 1587660, 2326828, 3410133, 4997792, 7324621
Offset: 0
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 5*x^7 + 8*x^8 + 11*x^9 + ...
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Michael Cohen and Yasuyuki Kachi, Recurrence Relations Rhythm. In: Noll, T., Montiel, M., Gómez, F., Hamido, O.C., Besada, J.L., Martins, J.O. (eds) Mathematics and Computation in Music. MCM 2024. Lecture Notes in Computer Science, vol. 14639. Springer, Cham.
- C. K. Fan, A Hecke algebra quotient and some combinatorial applications, J. Algebraic Combin. 5 (1996), no. 3, 175-189.
- C. K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167. [Page 156, f^0_n.]
- R. Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS 12 (2009) 09.6.5.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1).
Cf.
A060945 (Ordered partitions into 1's, 2's and 4's).
-
a013979 n = a013979_list !! n
a013979_list = 1 : 0 : 1 : 1 : zipWith (+) a013979_list
(zipWith (+) (tail a013979_list) (drop 2 a013979_list))
-- Reinhard Zumkeller, Mar 23 2012
-
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1+x)*(1-x-x^3)) )); // G. C. Greubel, Jul 17 2023
-
a[n_]:= If[n<0, SeriesCoefficient[x^4/(1 +x +x^2 -x^4), {x, 0, -n}], SeriesCoefficient[1/(1 -x^2 -x^3 -x^4), {x,0,n}]]; (* Michael Somos, Jun 20 2015 *)
LinearRecurrence[{0,1,1,1}, {1,0,1,1}, 50] (* G. C. Greubel, Jul 17 2023 *)
-
@CachedFunction
def b(n): return 1 if (n<3) else b(n-1) + b(n-3) # b = A000930
def A013979(n): return ((-1)^n +2*b(n) -b(n-1) +b(n-2) -int(n==1))/3
[A013979(n) for n in (0..50)] # G. C. Greubel, Jul 17 2023
A207426
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 0 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 114, 81, 14, 25, 225, 361, 351, 196, 21, 40, 625, 1425, 1521, 1162, 441, 31, 64, 1600, 5625, 8463, 6889, 3633, 961, 46, 104, 4096, 20550, 47089, 55361, 29929, 11067, 2116, 68, 169, 10816, 75076, 241087, 444889, 341329
Offset: 1
Some solutions for n=4 k=3
..0..1..1....1..1..0....0..1..1....1..1..0....1..0..0....0..1..1....1..1..1
..1..1..0....0..0..1....0..1..1....1..0..1....0..0..1....1..0..0....1..1..1
..1..1..1....0..1..1....0..1..1....1..0..1....1..0..1....1..0..1....1..1..1
..1..0..1....0..1..1....0..1..1....0..0..1....1..0..0....1..0..1....1..1..1
A207729
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 0 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 78, 81, 14, 25, 225, 169, 189, 196, 21, 40, 625, 611, 441, 490, 441, 31, 64, 1600, 2209, 2163, 1225, 1113, 961, 46, 104, 4096, 6016, 10609, 8575, 2809, 2449, 2116, 68, 169, 10816, 16384, 33063, 60025, 27931, 6241, 5474, 4624
Offset: 1
Some solutions for n=4 k=3
..0..0..1....1..1..0....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0
..1..1..1....1..1..1....1..0..1....0..0..1....0..1..1....1..1..1....1..1..0
..0..0..1....1..0..0....1..0..0....0..0..1....0..1..1....1..1..0....1..0..0
..0..0..1....1..0..0....1..0..0....1..1..0....1..1..1....1..0..0....1..0..0
A207693
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 60, 81, 13, 25, 225, 100, 144, 169, 18, 40, 625, 240, 256, 312, 324, 25, 64, 1600, 576, 768, 576, 612, 625, 34, 104, 4096, 1296, 2304, 1872, 1156, 1250, 1156, 46, 169, 10816, 2916, 5856, 6084, 4216, 2500, 2516, 2116, 62, 273
Offset: 1
Some solutions for n=4 k=3
..1..1..1....1..0..0....1..0..1....1..1..0....0..1..1....0..1..1....1..1..1
..1..1..0....0..0..1....0..1..1....0..0..1....1..0..1....1..1..0....0..0..1
..0..0..1....1..0..1....1..1..0....1..0..1....1..1..0....1..0..1....1..1..0
..1..0..1....1..0..0....1..0..0....1..0..0....0..0..1....0..1..1....0..1..1
A207908
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 0 1 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 102, 81, 13, 25, 225, 289, 261, 169, 18, 40, 625, 1071, 841, 611, 324, 25, 64, 1600, 3969, 4089, 2209, 1278, 625, 34, 104, 4096, 13230, 19881, 13865, 5041, 2625, 1156, 46, 169, 10816, 44100, 80511, 87025, 39831, 11025
Offset: 1
Some solutions for n=4 k=3
..0..1..1....1..0..0....1..0..0....0..0..1....0..0..1....0..1..1....0..0..1
..1..1..0....0..0..1....0..1..1....1..0..0....1..0..1....1..1..0....1..1..1
..0..1..1....1..1..0....1..0..0....0..1..1....0..1..1....0..0..1....0..0..1
..1..0..0....0..0..1....0..0..1....1..0..0....0..0..1....1..0..0....1..0..0
A207928
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 15, 81, 72, 100, 16, 25, 225, 144, 240, 256, 26, 40, 625, 360, 576, 704, 676, 42, 64, 1600, 900, 1872, 1936, 2080, 1764, 68, 104, 4096, 2160, 6084, 7744, 6400, 6216, 4624, 110, 169, 10816, 5184, 18096, 30976, 29760, 21904
Offset: 1
Some solutions for n=9 k=3
..0..0..1....0..0..1....0..1..1....1..0..0....1..0..0....0..0..1....0..0..1
..0..1..1....1..1..1....0..0..1....1..0..0....0..0..1....1..1..1....0..0..1
..1..1..0....1..0..0....1..0..0....0..1..1....1..1..0....1..1..0....1..1..0
..1..0..0....0..1..1....0..1..1....0..0..1....0..1..1....0..0..1....0..1..1
..0..1..1....1..1..0....1..1..1....1..1..0....0..0..1....1..0..1....1..0..0
..0..1..1....0..0..1....1..0..0....1..0..0....1..1..0....1..1..0....0..1..1
..1..0..0....1..0..0....0..1..1....0..1..1....0..1..1....0..1..1....1..0..1
..1..1..0....1..1..1....1..1..1....1..0..0....0..0..1....0..0..1....1..0..0
..0..1..1....0..1..1....1..0..0....1..1..1....1..0..0....1..1..0....0..1..1
A208108
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 78, 81, 14, 25, 225, 169, 171, 196, 22, 40, 625, 611, 361, 406, 484, 35, 64, 1600, 2209, 1805, 841, 990, 1225, 56, 104, 4096, 6016, 9025, 6235, 2025, 2485, 3136, 90, 169, 10816, 16384, 25555, 46225, 22995, 5041, 6328, 8100
Offset: 1
Some solutions for n=10 k=3
..1..0..0....0..0..1....1..0..1....1..1..0....1..0..0....0..1..1....0..0..1
..0..0..1....1..0..0....0..1..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..1..1....0..0..1....1..1..0....1..1..0....0..1..1....1..0..1
..0..1..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..1..1....0..1..1....1..1..0....1..0..0....0..1..1....1..0..1
..0..1..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..0..1....1..1..1....1..1..0....1..0..0....0..1..1....1..1..1
..0..0..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..1..0....0..1..1....1..1..1....1..1..0....1..0..0....0..1..1....0..0..1
..0..0..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..1..1
A335964
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-3,k-1) + T(n-4,k-2) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 2, 0, 0, 0, 1, 4, 4, 0, 0, 0, 0, 1, 5, 7, 2, 0, 0, 0, 0, 1, 6, 11, 6, 1, 0, 0, 0, 0, 1, 7, 16, 13, 3, 0, 0, 0, 0, 0, 1, 8, 22, 24, 9, 0, 0, 0, 0, 0, 0, 1, 9, 29, 40, 22, 3, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 1, 0, 0;
1, 2, 1, 0, 0;
1, 3, 2, 0, 0, 0;
1, 4, 4, 0, 0, 0, 0;
1, 5, 7, 2, 0, 0, 0, 0;
1, 6, 11, 6, 1, 0, 0, 0, 0;
1, 7, 16, 13, 3, 0, 0, 0, 0, 0;
1, 8, 22, 24, 9, 0, 0, 0, 0, 0, 0;
1, 9, 29, 40, 22, 3, 0, 0, 0, 0, 0, 0;
...
- Kenneth Edwards and Michael A. Allen, New Combinatorial Interpretations of the Fibonacci Numbers Squared, Golden Rectangle Numbers, and Jacobsthal Numbers Using Two Types of Tile, arXiv:2009.04649 [math.CO], 2020.
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
- John Konvalina, On the number of combinations without unit separation., Journal of Combinatorial Theory, Series A 31.2 (1981): 101-107. See Table I.
-
T[n_,k_]:=If[n
-
TT(n,k) = if (nA059259
T(n,k) = TT(n-k,k);
\\ matrix(7,7,n,k, T(n-1,k-1)) \\ Michel Marcus, Jul 18 2020
Comments