A169937
a(n) = binomial(m+n-1,n)^2 - binomial(m+n,n+1)*binomial(m+n-2,n-1) with m = 14.
Original entry on oeis.org
1, 91, 3185, 63700, 866320, 8836464, 71954064, 488259720, 2848181700, 14620666060, 67255063876, 281248448936, 1081724803600, 3863302870000, 12914469594000, 40680579221100, 121443493851225, 345280521733875, 938920716995625, 2451077240157000, 6162708489537600
Offset: 0
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=14.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences
A000012,
A000217,
A002415,
A006542,
A006857,
A108679,
A134288,
A134289,
A134290,
A134291,
A140925,
A140935,
A169937.
-
[(1/13)*Binomial(n+12,12)^2*(n+13)/(n+1): n in [0..20]]; // Bruno Berselli, Nov 09 2011
-
f:=m->[seq( binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1), n=0..20)]; f(14);
-
Table[Binomial[13+n,n]^2-Binomial[14+n,n+1]Binomial[12+n,n-1],{n,0,20}] (* Harvey P. Dale, Nov 09 2011 *)
-
a(n)=binomial(n+12,12)^2*(n+13)/(n+1)/13 \\ Charles R Greathouse IV, Nov 09 2011
A004282
a(n) = n*(n+1)^2*(n+2)^2/12.
Original entry on oeis.org
0, 3, 24, 100, 300, 735, 1568, 3024, 5400, 9075, 14520, 22308, 33124, 47775, 67200, 92480, 124848, 165699, 216600, 279300, 355740, 448063, 558624, 690000, 845000, 1026675, 1238328, 1483524, 1766100, 2090175
Offset: 0
-
[n*(n+1)^2*(n+2)^2/12: n in [0..50]]; // Vincenzo Librandi, Feb 09 2012
-
a:= n-> binomial(2+n, 2)*binomial(2+n, 3): seq(a(n), n=0..31); # Zerinvary Lajos, Apr 26 2007
-
Table[n*(n+1)^2*(n+2)^2/12,{n,0,40}] (* Vincenzo Librandi, Feb 09 2012 *)
-
a(n) = binomial(n+2,2)*binomial(n+2,3); \\ Charles R Greathouse IV, Feb 09 2012
A120247
Triangle of Hankel transforms of binomial(n+k, k).
Original entry on oeis.org
1, 1, -1, 1, -3, -1, 1, -6, -10, 1, 1, -10, -50, 35, 1, 1, -15, -175, 490, 126, -1, 1, -21, -490, 4116, 5292, -462, -1, 1, -28, -1176, 24696, 116424, -60984, -1716, 1, 1, -36, -2520, 116424, 1646568, -3737448, -736164, 6435, 1, 1, -45, -4950, 457380, 16818516, -133613766, -131589315, 9202050, 24310, -1
Offset: 0
Triangle begins
1;
1, -1;
1, -3, -1;
1, -6, -10, 1;
1, -10, -50, 35, 1;
1, -15, -175, 490, 126, -1;
1, -21, -490, 4116, 5292, -462, -1;
1, -28, -1176, 24696, 116424, -60984, -1716, 1;
-
p:= func< m,k | k eq 0 select 1 else (&*[Binomial(m+j, k+1): j in [1..k]]) >;
A120247:= func< n,k | (-1)^Floor((k+1)/2)*p(n,k)/p(k,k) >;
[A120247(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 15 2023
-
A120247 := proc(n,k)
(cos(Pi*k/2)-sin(Pi*k/2))*mul(binomial(n+j+1,k+1),j=0..k-1)/mul(binomial(k+j+1,k+1),j=0..k-1) ;
simplify(%) ;
end proc: # R. J. Mathar, Mar 22 2013
-
p[m_, k_]:= Product[Binomial[m+j, k+1], {j,k}];
T[n_, k_]:= (-1)^Floor[(k+1)/2]*p[n,k]/p[k,k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 15 2023 *)
-
def p(m,k): return product(binomial(m+j+1,k+1) for j in range(k))
def A120247(n,k): return (-1)^((k+1)//2)*p(n,k)/p(k,k)
flatten([[A120247(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 15 2023
A253285
a(n) = RF(n+1,3)*C(n+2,n-1), where RF(a,n) is the rising factorial.
Original entry on oeis.org
0, 24, 240, 1200, 4200, 11760, 28224, 60480, 118800, 217800, 377520, 624624, 993720, 1528800, 2284800, 3329280, 4744224, 6627960, 9097200, 12289200, 16364040, 21507024, 27931200, 35880000, 45630000, 57493800, 71823024, 89011440, 109498200, 133771200, 162370560
Offset: 0
-
List([0..40], n -> n*((n+1)*(n+2))^2*(n+3)/6); # Bruno Berselli, Mar 06 2018
-
[n*((n+1)*(n+2))^2*(n+3)/6: n in [0..40]]; // Bruno Berselli, Mar 06 2018
-
seq(n*((n+1)*(n+2))^2*(n+3)/6,n=0..19);
-
Table[n ((n + 1) (n + 2))^2 (n + 3)/6, {n, 0, 40}] (* Bruno Berselli, Mar 06 2018 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,24,240,1200,4200,11760,28224},40] (* Harvey P. Dale, Aug 05 2024 *)
-
[n*((n+1)*(n+2))**2*(n+3)/6 for n in range(40)] # Bruno Berselli, Mar 06 2018
-
[n*((n+1)*(n+2))^2*(n+3)/6 for n in (0..40)] # Bruno Berselli, Mar 06 2018
A296419
Triangle T(i,j) read by rows: Number of plane bipolar orientations with i+1 vertices and j+1 faces.
Original entry on oeis.org
1, 1, 4, 1, 10, 50, 1, 20, 175, 980, 1, 35, 490, 4116, 24696, 1, 56, 1176, 14112, 116424, 731808, 1, 84, 2520, 41580, 457380, 3737448, 24293412, 1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100, 1, 165, 9075, 259545, 4723719, 61408347, 614083470, 4971151900, 33803832920
Offset: 1
The triangle starts in row 1 as
1;
1, 4;
1, 10, 50;
1, 20, 175, 980;
1, 35, 490, 4116, 24696;
1, 56, 1176, 14112, 116424, 731808;
1, 84, 2520, 41580, 457380, 3737448, 24293412;
1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100;
-
A296419 := proc(i,j)
2*(i+j-2)!*(i+j-1)!*(i+j)!/(i-1)!/i!/(i+1)!/(j-1)!/j!/(j+1)! ;
end proc:
seq(seq(A296419(i,j),j=1..i),i=1..10) ;
A071910
a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.
Original entry on oeis.org
0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
Offset: 0
Cf.
A006542, (first differences of a(n) /18)
A006414, (second differences of a(n) /18)
A006322, (third differences of a(n) /18)
A004068, (fourth differences of a(n) /18)
A005891, (fifth differences of a(n) /18)
A008706.
-
Join[{0},Times@@@Partition[Accumulate[Range[40]],3,1]] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,18,180,900,3150,8820,21168},40] (* Harvey P. Dale, Aug 08 2025 *)
-
t(n) = n*(n+1)/2;
a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015
A256551
Triangle read by rows, T(n,k) matrix inverse of A256550, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 1, -3, 1, 0, 1, 6, -6, 1, 0, -15, 10, 20, -10, 1, 0, 48, -225, 50, 50, -15, 1, 0, 581, 1008, -1575, 175, 105, -21, 1, 0, -11069, 16268, 9408, -7350, 490, 196, -28, 1, 0, 20784, -398484, 195216, 56448, -26460, 1176, 336, -36, 1
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, -1, 1]
[0, 1, -3, 1]
[0, 1, 6, -6, 1]
[0, -15, 10, 20, -10, 1]
[0, 48, -225, 50, 50, -15, 1]
[0, 581, 1008, -1575, 175, 105, -21, 1]
A107981
Triangle read by rows: T(n,k) = (k+1)(k+2)(n+2)(n+3)(6n^2 - 8n*k + 18n + 3k^2 - 11k + 12)/144 for 0<=k<=n.
Original entry on oeis.org
1, 6, 10, 20, 40, 50, 50, 110, 155, 175, 105, 245, 371, 455, 490, 196, 476, 756, 980, 1120, 1176, 336, 840, 1380, 1860, 2220, 2436, 2520, 540, 1380, 2325, 3225, 3975, 4515, 4830, 4950, 825, 2145, 3685, 5225, 6600, 7700, 8470, 8910, 9075, 1210, 3190
Offset: 0
Triangle begins:
1;
6,10;
20,40,50;
50,110,155,175;
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{F(n,3,l)}).
-
T:=proc(n,k) if k<=n then 1/144*(k+1)*(k+2)*(n+2)*(n+3)*(6*n^2-8*n*k+18*n+3*k^2-11*k+12) else 0 fi end: for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
A107983
Triangle read by rows: T(n,k) = (k+1)(n+2)(n+3)(n-k+2)(n-k+1)/12 for 0<=k<=n.
Original entry on oeis.org
1, 6, 4, 20, 20, 10, 50, 60, 45, 20, 105, 140, 126, 84, 35, 196, 280, 280, 224, 140, 56, 336, 504, 540, 480, 360, 216, 84, 540, 840, 945, 900, 750, 540, 315, 120, 825, 1320, 1540, 1540, 1375, 1100, 770, 440, 165, 1210, 1980, 2376, 2464, 2310, 1980, 1540
Offset: 0
Triangle begins:
1;
6,4;
20,20,10;
50,60,45,20;
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{F(n,3,-l)}).
-
T:=proc(n,k) if k<=n then (k+1)*(n+2)*(n+3)*(n-k+2)*(n-k+1)/12 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Flatten[Table[((k+1)(n+2)(n+3)(n-k+2)(n-k+1))/12,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 08 2013 *)
Comments