cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A169937 a(n) = binomial(m+n-1,n)^2 - binomial(m+n,n+1)*binomial(m+n-2,n-1) with m = 14.

Original entry on oeis.org

1, 91, 3185, 63700, 866320, 8836464, 71954064, 488259720, 2848181700, 14620666060, 67255063876, 281248448936, 1081724803600, 3863302870000, 12914469594000, 40680579221100, 121443493851225, 345280521733875, 938920716995625, 2451077240157000, 6162708489537600
Offset: 0

Views

Author

N. J. A. Sloane, Aug 28 2010

Keywords

Comments

13th column (and diagonal) of the triangle A001263. - Bruno Berselli, May 07 2012

References

  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=14.

Crossrefs

The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Cf. A002378.

Programs

  • Magma
    [(1/13)*Binomial(n+12,12)^2*(n+13)/(n+1): n in [0..20]]; // Bruno Berselli, Nov 09 2011
    
  • Maple
    f:=m->[seq( binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1), n=0..20)]; f(14);
  • Mathematica
    Table[Binomial[13+n,n]^2-Binomial[14+n,n+1]Binomial[12+n,n-1],{n,0,20}] (* Harvey P. Dale, Nov 09 2011 *)
  • PARI
    a(n)=binomial(n+12,12)^2*(n+13)/(n+1)/13 \\ Charles R Greathouse IV, Nov 09 2011

Formula

a(n) = (1/13)*A010965(n+12)^2*(n+13)/(n+1). - Bruno Berselli, Nov 09 2011
a(n) = Product_{i=1..12} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 45997360927193/23100 - 201753552*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 16431564019/23100 - 72072*Pi^2. (End)

A004282 a(n) = n*(n+1)^2*(n+2)^2/12.

Original entry on oeis.org

0, 3, 24, 100, 300, 735, 1568, 3024, 5400, 9075, 14520, 22308, 33124, 47775, 67200, 92480, 124848, 165699, 216600, 279300, 355740, 448063, 558624, 690000, 845000, 1026675, 1238328, 1483524, 1766100, 2090175
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = C(2+n, 2)*C(2+n, 3) = A000217(n+1)*A000292(n). - Zerinvary Lajos, Jan 10 2006
a(n-1) = Sum_{1 <= x_1, x_2 <= n} x_1*(det V(x_1,x_2))^2 = Sum_{1 <= i,j <= n} i*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
G.f.: x*(3+6*x+x^2)/(1-x)^6. - Colin Barker, Feb 09 2012
a(n) = Sum_{k=0..n} Sum_{i=0..n} (n-i+1) * C(k+1,k-1). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A004302(n+1) - A000537(n+1). - J. M. Bergot, Mar 28 2018
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 30 - 3*Pi^2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/2 - 24*log(2) + 12. (End)

A120247 Triangle of Hankel transforms of binomial(n+k, k).

Original entry on oeis.org

1, 1, -1, 1, -3, -1, 1, -6, -10, 1, 1, -10, -50, 35, 1, 1, -15, -175, 490, 126, -1, 1, -21, -490, 4116, 5292, -462, -1, 1, -28, -1176, 24696, 116424, -60984, -1716, 1, 1, -36, -2520, 116424, 1646568, -3737448, -736164, 6435, 1, 1, -45, -4950, 457380, 16818516, -133613766, -131589315, 9202050, 24310, -1
Offset: 0

Views

Author

Paul Barry, Jun 12 2006

Keywords

Comments

Columns include -A000217, -A006542, A107915.
Row k is the Hankel transform of C(n+k, k).
The matrix inverse starts
1;
1, -1;
-2, 3, -1;
-15, 24, -10, 1;
434, -700, 300, -35, 1;
47670, -76950, 33075, -3920, 126, -1;
-19787592, 31943835, -13733720, 1629936, -52920, 462, -1; - R. J. Mathar, Mar 22 2013

Examples

			Triangle begins
  1;
  1,  -1;
  1,  -3,    -1;
  1,  -6,   -10,     1;
  1, -10,   -50,    35,      1;
  1, -15,  -175,   490,    126,     -1;
  1, -21,  -490,  4116,   5292,   -462,    -1;
  1, -28, -1176, 24696, 116424, -60984, -1716,   1;
		

Crossrefs

Columns include: A000217, A006542, A107915.
Cf. A120248.

Programs

  • Magma
    p:= func< m,k | k eq 0 select 1 else (&*[Binomial(m+j, k+1): j in [1..k]]) >;
    A120247:= func< n,k | (-1)^Floor((k+1)/2)*p(n,k)/p(k,k) >;
    [A120247(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 15 2023
    
  • Maple
    A120247 := proc(n,k)
        (cos(Pi*k/2)-sin(Pi*k/2))*mul(binomial(n+j+1,k+1),j=0..k-1)/mul(binomial(k+j+1,k+1),j=0..k-1) ;
        simplify(%) ;
    end proc: # R. J. Mathar, Mar 22 2013
  • Mathematica
    p[m_, k_]:= Product[Binomial[m+j, k+1], {j,k}];
    T[n_, k_]:= (-1)^Floor[(k+1)/2]*p[n,k]/p[k,k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 15 2023 *)
  • SageMath
    def p(m,k): return product(binomial(m+j+1,k+1) for j in range(k))
    def A120247(n,k): return (-1)^((k+1)//2)*p(n,k)/p(k,k)
    flatten([[A120247(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 15 2023

Formula

T(n, k) = (cos(pi*k/2) - sin(pi*k/2))*( Product{j=0..k-1} C(n+j+1, k+1)/Product{j=0..k-1} C(k+j+1, k+1) ).

A253285 a(n) = RF(n+1,3)*C(n+2,n-1), where RF(a,n) is the rising factorial.

Original entry on oeis.org

0, 24, 240, 1200, 4200, 11760, 28224, 60480, 118800, 217800, 377520, 624624, 993720, 1528800, 2284800, 3329280, 4744224, 6627960, 9097200, 12289200, 16364040, 21507024, 27931200, 35880000, 45630000, 57493800, 71823024, 89011440, 109498200, 133771200, 162370560
Offset: 0

Views

Author

Peter Luschny, Mar 23 2015

Keywords

Crossrefs

Programs

  • GAP
    List([0..40], n -> n*((n+1)*(n+2))^2*(n+3)/6); # Bruno Berselli, Mar 06 2018
    
  • Magma
    [n*((n+1)*(n+2))^2*(n+3)/6: n in [0..40]]; // Bruno Berselli, Mar 06 2018
    
  • Maple
    seq(n*((n+1)*(n+2))^2*(n+3)/6,n=0..19);
  • Mathematica
    Table[n ((n + 1) (n + 2))^2 (n + 3)/6, {n, 0, 40}] (* Bruno Berselli, Mar 06 2018 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,24,240,1200,4200,11760,28224},40] (* Harvey P. Dale, Aug 05 2024 *)
  • Python
    [n*((n+1)*(n+2))**2*(n+3)/6 for n in range(40)] # Bruno Berselli, Mar 06 2018
  • Sage
    [n*((n+1)*(n+2))^2*(n+3)/6 for n in (0..40)] # Bruno Berselli, Mar 06 2018
    

Formula

G.f.: -24/(x-1)^4 - 144/(x-1)^5 - 240/(x-1)^6 - 120/(x-1)^7. See the comment in A253284 for the general case.
a(n) = n*((n+1)*(n+2))^2*(n+3)/6.
a(n) = (N^3 + 4*N^2 + 4*N)/6 = N*(N + 2)^2/6 with N = n^2 + 3*n.
From Bruno Berselli, Mar 06 2018: (Start)
a(n) = 24*A006542(n+3) for n>0.
a(n) = Sum_{i=0..n} i*(i+1)^3*(i+2). Therefore, the first differences are in A133754. (End)

A296419 Triangle T(i,j) read by rows: Number of plane bipolar orientations with i+1 vertices and j+1 faces.

Original entry on oeis.org

1, 1, 4, 1, 10, 50, 1, 20, 175, 980, 1, 35, 490, 4116, 24696, 1, 56, 1176, 14112, 116424, 731808, 1, 84, 2520, 41580, 457380, 3737448, 24293412, 1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100, 1, 165, 9075, 259545, 4723719, 61408347, 614083470, 4971151900, 33803832920
Offset: 1

Views

Author

R. J. Mathar, Feb 25 2018

Keywords

Examples

			The triangle starts in row 1 as
  1;
  1,   4;
  1,  10,   50;
  1,  20,  175,    980;
  1,  35,  490,   4116,   24696;
  1,  56, 1176,  14112,  116424,   731808;
  1,  84, 2520,  41580,  457380,  3737448,  24293412;
  1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100;
		

Crossrefs

Cf. rows/columns: A006542, A047819, A107915, A140901, A140903, A140907.

Programs

  • Maple
    A296419 := proc(i,j)
        2*(i+j-2)!*(i+j-1)!*(i+j)!/(i-1)!/i!/(i+1)!/(j-1)!/j!/(j+1)! ;
    end proc:
    seq(seq(A296419(i,j),j=1..i),i=1..10) ;

Formula

T(i,j) = T(j,i) = 2*(i+j-2)!*(i+j-1)!*(i+j)!/((i-1)!*i!*(i+1)!*(j-1)!*j!*(j+1)!).

A071910 a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.

Original entry on oeis.org

0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2002

Keywords

Comments

a(n) is also the number of three-dimensional cage assemblies such that the assembly is not a cube. See also A052149 for the two-dimensional version and to A059827 for the non-exclusive version. - Alejandro Rodriguez, Oct 20 2020

Crossrefs

Cf. A006542, (first differences of a(n) /18) A006414, (second differences of a(n) /18) A006322, (third differences of a(n) /18) A004068, (fourth differences of a(n) /18) A005891, (fifth differences of a(n) /18) A008706.

Programs

  • Mathematica
    Join[{0},Times@@@Partition[Accumulate[Range[40]],3,1]] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,18,180,900,3150,8820,21168},40] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    t(n) = n*(n+1)/2;
    a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015

Formula

a(n) = 18*A006542(n+3). - Vladeta Jovovic, Jun 14 2002
G.f.: 18*x*(1+3*x+x^2)/(1-x)^7. - Vladeta Jovovic, Jun 14 2002
a(n) = ((n+1)*(n+2))^3/8 - Sum_{i=1..n+1} i^3. - Jon Perry, Feb 13 2004
a(n) = C(2+n, n)*C(3+n, 1+n)*C(4+n, 2+n). - Zerinvary Lajos, Jul 29 2005
a(n) = A059827(n+1) - A000537(n+1). - Michel Marcus, Oct 21 2015

A256551 Triangle read by rows, T(n,k) matrix inverse of A256550, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 1, -3, 1, 0, 1, 6, -6, 1, 0, -15, 10, 20, -10, 1, 0, 48, -225, 50, 50, -15, 1, 0, 581, 1008, -1575, 175, 105, -21, 1, 0, -11069, 16268, 9408, -7350, 490, 196, -28, 1, 0, 20784, -398484, 195216, 56448, -26460, 1176, 336, -36, 1
Offset: 0

Views

Author

Peter Luschny, Apr 01 2015

Keywords

Examples

			Triangle starts:
[1]
[0,   1]
[0,  -1,    1]
[0,   1,   -3,     1]
[0,   1,    6,    -6,   1]
[0, -15,   10,    20, -10,   1]
[0,  48, -225,    50,  50, -15,   1]
[0, 581, 1008, -1575, 175, 105, -21, 1]
		

Crossrefs

Formula

T(n+1,n) = -A000217(n).
T(n+2,n) = A002415(n+1).
For T(n,1) compare A006542.

A107981 Triangle read by rows: T(n,k) = (k+1)(k+2)(n+2)(n+3)(6n^2 - 8n*k + 18n + 3k^2 - 11k + 12)/144 for 0<=k<=n.

Original entry on oeis.org

1, 6, 10, 20, 40, 50, 50, 110, 155, 175, 105, 245, 371, 455, 490, 196, 476, 756, 980, 1120, 1176, 336, 840, 1380, 1860, 2220, 2436, 2520, 540, 1380, 2325, 3225, 3975, 4515, 4830, 4950, 825, 2145, 3685, 5225, 6600, 7700, 8470, 8910, 9075, 1210, 3190
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids. Column 0 yields A002415. Main diagonal yields A006542.

Examples

			Triangle begins:
1;
6,10;
20,40,50;
50,110,155,175;
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{F(n,3,l)}).

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then 1/144*(k+1)*(k+2)*(n+2)*(n+3)*(6*n^2-8*n*k+18*n+3*k^2-11*k+12) else 0 fi end: for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

A107983 Triangle read by rows: T(n,k) = (k+1)(n+2)(n+3)(n-k+2)(n-k+1)/12 for 0<=k<=n.

Original entry on oeis.org

1, 6, 4, 20, 20, 10, 50, 60, 45, 20, 105, 140, 126, 84, 35, 196, 280, 280, 224, 140, 56, 336, 504, 540, 480, 360, 216, 84, 540, 840, 945, 900, 750, 540, 315, 120, 825, 1320, 1540, 1540, 1375, 1100, 770, 440, 165, 1210, 1980, 2376, 2464, 2310, 1980, 1540
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids. Column 0 yields A002415. Main diagonal yields A000292. Row sums yield A006542.
T(n,k) = number of Dyck (n+4)-paths with 4 peaks (UDs) and last descent of length k+1. For example, T(1,1)=4 counts UUDUDUDUDD, UDUUDUDUDD, UDUDUUDUDD, UDUDUDUUDD. - David Callan, Jun 26 2006

Examples

			Triangle begins:
1;
6,4;
20,20,10;
50,60,45,20;
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{F(n,3,-l)}).

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then (k+1)*(n+2)*(n+3)*(n-k+2)*(n-k+1)/12 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[((k+1)(n+2)(n+3)(n-k+2)(n-k+1))/12,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 08 2013 *)
Previous Showing 21-29 of 29 results.