cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A329059 3-parking triangle T(r, i, 3) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 3 and 0 <= i <= r.

Original entry on oeis.org

1, 3, 1, 15, 9, 3, 91, 78, 48, 16, 612, 680, 600, 375, 125, 4389, 5985, 6840, 6156, 3888, 1296, 32890, 53130, 74382, 86779, 79233, 50421, 16807, 254475, 475020, 786240, 1123200, 1331200, 1228800, 786432, 262144, 2017356, 4272048, 8155728, 13762791, 19978245, 23973894, 22320522, 14348907, 4782969
Offset: 0

Views

Author

Stefano Spezia, Nov 03 2019

Keywords

Comments

The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip).

Examples

			r/i|      0      1      2      3      4
———————————————————————————————————————
0  |      1
1  |      3      1
2  |     15      9      3
3  |     91     78     48     16
4  |    612    680    600    375    125
...
		

Crossrefs

Programs

  • Mathematica
    T[r_, i_,k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r,i,3],{r,0,8},{i,0,r}]]

Formula

T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i).
T(r, 0, 3) = A006632(r + 1).
T(r, r, 3) = A000272(r + 1).

A337291 a(n) = 3*binomial(4*n,n)/(4*n-1).

Original entry on oeis.org

4, 12, 60, 364, 2448, 17556, 131560, 1017900, 8069424, 65204656, 535070172, 4446927732, 37353738800, 316621743480, 2704784196240, 23263187479980, 201275443944432, 1750651680235920, 15298438066553776, 134252511729576240, 1182622941581590080
Offset: 1

Views

Author

Lucas A. Brown, Aug 21 2020

Keywords

Comments

a(n) is the number of lattice paths from (0,0) to (3n,n) using only the steps (1,0) and (0,1) and whose only lattice points on the line y = x/3 are the path's endpoints. - Lucas A. Brown, Aug 21 2020

Crossrefs

Programs

  • Mathematica
    Array[3 Binomial[4 #, #]/(4 # - 1) &, 21] (* Michael De Vlieger, Aug 21 2020 *)
  • PARI
    a(n) = {3*binomial(4*n,n)/(4*n-1)} \\ Andrew Howroyd, Aug 21 2020

Formula

a(n) = 4*A006632(n).
G.f.: 4*x*F(x)^3 where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.
D-finite with recurrence 3*n*(3*n-1)*(3*n-2)*a(n) -8*(4*n-5)*(4*n-3)*(2*n-1)*a(n-1)=0, a(0)=1. - R. J. Mathar, Jan 26 2025

A369617 Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^3 + x) ).

Original entry on oeis.org

1, 4, 22, 146, 1079, 8525, 70468, 601816, 5268241, 47019566, 426250277, 3914020148, 36328457669, 340278596273, 3212416054283, 30534649412247, 291981031204917, 2806832429353512, 27109863184695640, 262951127248539898, 2560229132085602215
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2024

Keywords

Crossrefs

Programs

  • Maple
    A369617 := proc(n)
        add(binomial(n+1,k) * binomial(4*n-4*k+2,n-k),k=0..n) ;
        %/(n+1) ;
    end proc;
    seq(A369617(n),n=0..70) ; # R. J. Mathar, Jan 28 2024
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^3+x))/x)
    
  • PARI
    a(n) = sum(k=0, n, binomial(n+1, k)*binomial(4*n-4*k+2, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+1,k) * binomial(4*n-4*k+2,n-k).
D-finite with recurrence 3*(3*n+2)*(3*n+1)*(n+1)*a(n) +4*(-91*n^3 -32*n^2 +n+2)*a(n-1) +2*(n-1)*(465*n^2 -337*n+86)*a(n-2) -4*(n-1)*(n-2) *(219*n-187)*a(n-3) +283*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jan 28 2024

A371495 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^3.

Original entry on oeis.org

1, 3, 12, 64, 381, 2430, 16227, 112008, 792717, 5721165, 41945373, 311529831, 2338909219, 17722127580, 135346614906, 1040779011412, 8051611785006, 62620659604659, 489339248275242, 3840135625895886, 30251386980891657, 239138782521553659, 1896380840948325606
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(4*k+2, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(4*k+2,k)/(k+1).

A069270 Third level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 2nd level is A069269).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 9, 22, 1, 4, 15, 52, 140, 1, 5, 22, 91, 340, 969, 1, 6, 30, 140, 612, 2394, 7084, 1, 7, 39, 200, 969, 4389, 17710, 53820, 1, 8, 49, 272, 1425, 7084, 32890, 135720, 420732, 1, 9, 60, 357, 1995, 10626, 53820, 254475, 1068012, 3362260
Offset: 0

Views

Author

Henry Bottomley, Mar 12 2002

Keywords

Comments

For the m-th level generalization of Catalan triangle T(n,k) = C(n+mk,k)*(n-k+1)/(n+(m-1)k+1); for n >= k+m: T(n,k) = T(n-m+1,k+1) - T(n-m,k+1); and T(n,n) = T(n+m-1,n-1) = C((m+1)n,n)/(mn+1).
Antidiagonals of convolution matrix of Table 1.5, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019

Examples

			Rows start
  1;
  1,   1;
  1,   2,   4;
  1,   3,   9,  22;
  1,   4,  15,  52, 140;
etc.
		

Crossrefs

Columns include A000012, A000027, A055999.
Right-hand diagonals include A002293, A069271, A006632.
Cf. A130458 (row sums).

Programs

  • Maple
    A069270 := proc(n,k)
            binomial(n+3*k,k)*(n-k+1)/(n+2*k+1) ;
    end proc: # R. J. Mathar, Oct 11 2015
  • Mathematica
    Table[Binomial[n + 3 k, k] (n - k + 1)/(n + 2 k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 27 2019 *)

Formula

T(n, k) = C(n+3k, k)*(n-k+1)/(n+2k+1).
For n >= k+3: T(n, k) = T(n-2, k+1)-T(n-3, k+1).
T(n, n) = T(n+2, n-1) = C(4n, n)/(3n+1).

A247031 G.f.: 1 = Sum_{n>=0} a(n)*x^n * [ Sum_{k=0..n+1} binomial(n+1, k)^3 * (-x)^k ]^3.

Original entry on oeis.org

1, 3, 69, 5005, 806148, 239220375, 116532061510, 86173621173099, 91417549409916684, 133300597778263476112, 258360728839130761571757, 647880493609691058921741273, 2055869510173976408422116133220, 8103111707775918586405906798540650, 39047811321420953231675462397758519802
Offset: 0

Views

Author

Paul D. Hanna, Sep 09 2014

Keywords

Comments

Compare to a g.f. of A006632(n) = 3*binomial(4*n+3,n)/(4*n+3):
1 = Sum_{n>=0} A006632(n)*x^n * [ Sum_{k=0..n+1} binomial(n+1, k)*(-x)^k ]^3
where A006632 equals the self-convolution cube of A002293.
...
a(3*n) == 2 (mod 3) iff A245658(n) == 2 (mod 3), where A245658 is the self-convolution cube root of this sequence (conjecture).

Examples

			O.g.f.: A(x) = 1 + 3*x + 69*x^2 + 5005*x^3 + 806148*x^4 + 239220375*x^5 +...
such that the coefficients satisfy:
1 = 1*(1-x)^3 + 3*x*(1-2^3*x+x^2)^3 + 69*x^2*(1-3^3*x+3^3*x^2-x^3)^3 + 5005*x^3*(1-4^3*x+6^3*x^2-4^3*x^3+x^4)^3 + 806148*x^4*(1-5^3*x+10^3*x^2-10^3*x^3+5^3*x^4-x^5)^3 +...
Note that the cube-root of the o.g.f., A(x)^(1/3), is an integer series:
A(x)^(1/3) = 1 + x + 22*x^2 + 1624*x^3 + 264962*x^4 + 79136637*x^5 + 38671111558*x^6 + 28642761340956*x^7 + 30413158977739302*x^8 +...+ A245658(n)*x^n +...
CONJECTURE: given
G(x,m,j) = Sum_{n>=0} a(n) * (m*x)^n * [ Sum_{k=0..n+1} C(n+1, k)^3 * (j*x)^k ]^3
then G(x,m,j)^(1/3) is an integer series in x whenever m, j, are integers.
OBSERVATIONS.
The terms of this sequence are congruent to 2 modulo 3 at positions:
[12, 36, 93, 108, 111, 114, 120, 174, 255, 279, ...].
The terms of A245658 are congruent to 2 modulo 3 at positions:
[4, 12, 31, 36, 37, 38, 40, 58, 85, 93, ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0, 1, -polcoeff(sum(m=0, n-1, a(m)*x^m*sum(k=0, m+1, binomial(m+1, k)^3 * (-x)^k +x*O(x^n) )^3 ), n))}
    for(n=0, 20, print1(a(n), ", "))

A366327 G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^3).

Original entry on oeis.org

1, 2, -5, 33, -260, 2263, -20979, 203124, -2030121, 20786694, -216928144, 2298911699, -24673591005, 267644087524, -2929602893537, 32317666058508, -358931896710948, 4010200327457883, -45040693394259858, 508253687784232108, -5759468659295939684
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(n+2*k-2, n-k)/(4*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(4*k-1,k) * binomial(n+2*k-2,n-k)/(4*k-1).

A377504 E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x))^3.

Original entry on oeis.org

1, 3, 36, 735, 21972, 871995, 43308378, 2588123811, 180990517032, 14507325973395, 1311719669172750, 132102208441613883, 14666354372331521676, 1779817542971018697003, 234399632982398657764578, 33297612755940733707395955, 5075234637265322738651060688, 826215756199826873368252279971
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*k+2, k)/((k+1)*(n-k)!));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A364987.
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*k+2,k)/( (k+1)*(n-k)! ).

A381745 Expansion of exp( Sum_{k>=1} binomial(8*k-1,2*k) * x^k/k ).

Original entry on oeis.org

1, 21, 903, 49525, 3070308, 204928371, 14369906538, 1043861319189, 77866470852108, 5929621690613108, 459076176165983247, 36026517938705145267, 2859318461620989381900, 229114879928544260792946, 18509862380800289696106372, 1506048000721264678984095445, 123303480420582227597300406588
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, binomial(8*k-1, 2*k)*x^k/k)))

Formula

G.f. A(x) satisfies A(x^2) = B(x)/x * B(-x)/(-x), where B(x) is the g.f. of A006632.
a(n) = Sum_{k=0..2*n} (-1)^k * A006632(k+1) * A006632(2*n-k+1).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(8*k-1,2*k) * a(n-k).
G.f.: B(x)^3, where B(x) is the g.f. of A381751.

A365123 G.f. satisfies A(x) = (1 + x / (1 - x*A(x))^4)^2.

Original entry on oeis.org

1, 2, 9, 44, 244, 1438, 8858, 56340, 367160, 2438934, 16453015, 112411836, 776258588, 5409237100, 37988571802, 268606426836, 1910584687932, 13661702623498, 98148312810335, 708092115326436, 5127976641997944, 37264674894021280, 271650189521574734
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=4, t=2) = sum(k=0, n, binomial(t*(n-k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));

Formula

If g.f. satisfies A(x) = (1 + x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*(n-k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
Previous Showing 21-30 of 45 results. Next