cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A271955 Somos's sequence {b(8,n)} defined in comment in A078495: a(0)=a(1)=...=a(18)=1; for n>=19, a(n)=(a(n-1)*a(n-18)+a(n-9)*a(n-10))/a(n-19).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 30, 50, 80, 122, 178, 250, 340, 800, 1308, 1924, 2780, 4136, 6452, 10476, 17348, 28720, 61664, 179696, 439304, 910464, 1686704, 2905792, 4793624, 7753616, 12537856
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 19 select 1 else (Self(n-1)*Self(n-18)+Self(n-9)*Self(n-10))/Self(n-19): n in [1..60]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[8,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
  • PARI
    {a(n) = if(n<= 19, 1, (a(n-1)*a(n-18) + a(n-9)*a(n-10))/a(n-19))}; for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Jul 30 2018
    

A276130 a(0) = a(1) = a(2) = a(3) = a(4) = 1; for n>4, a(n) = ( a(n-1) +a(n-3) )*( a(n-2)+a(n-4) ) / a(n-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 10, 55, 649, 38881, 6414706, 24978826228, 2913605221297249, 112139525368095766797655, 8403341152380185679389503620974065, 146904111947501701959735285821948223340424963459227
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Cf. A006721.

Programs

  • PARI
    a(n) = if (n<=4, 1, (9-3*(-1)^n)/2*a(n-1)*a(n-3)-a(n-2)-a(n-4)); \\ Michel Marcus, Aug 27 2016

Formula

a(n) = (9-3*(-1)^n)/2*a(n-1)*a(n-3)-a(n-2)-a(n-4).

A276534 a(n) = a(n-1) * a(n-4) * (a(n-2) * a(n-3) + 1) / a(n-5), with a(0) = a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 12, 108, 10584, 27454896, 94148851006224, 246222177535609206635748240, 62371770277951054762478578990896212287188931341600, 3750595553941161278345366267513070968239986992860645038477600300348697171928615364721752014400
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2016

Keywords

Comments

Inspired by Somos-5 sequence.
a(n) is an integer for n >= 0.
a(n+1)/a(n) is an integer for n >= 0.

Examples

			a(5) = a(4) * b(4) =  1 * 2 =   2,
a(6) = a(5) * b(5) =  2 * 2 =   4,
a(7) = a(6) * b(6) =  4 * 3 =  12,
a(8) = a(7) * b(7) = 12 * 9 = 108.
		

Crossrefs

Programs

  • Ruby
    def A(k, n)
      a = Array.new(2 * k + 1, 1)
      ary = [1]
      while ary.size < n + 1
        i = 0
        k.downto(1){|j|
          i += 1
          i *= a[j] * a[-j]
        }
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276534(n)
      A(2, n)
    end

Formula

a(n) * a(n-5) = a(n-1) * a(n-4) + a(n-1) * a(n-2) * a(n-3) * a(n-4).
a(4-n) = a(n).
Let b(n) = b(n-4) * (b(n-2) * (b(0) * b(1) * ... * b(n-3))^2 + 1) with b(0) = b(1) = b(2) = b(3) = 1, then a(n) = a(n-1) * b(n-1) = b(0) * b(1) * ... * b(n-1) for n > 0.

A333260 Number of terms in polynomial sequence s(n) = (x*s(n-1)*s(n-4) + y*s(n-2)*s(n-3))/s(n-5), with s(k) = 1 for k = 0..4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 7, 11, 16, 23, 33, 46, 64, 84, 109, 143, 184, 228, 283, 351, 429, 515, 615, 734, 871, 1017, 1181, 1376, 1593, 1821, 2077, 2372, 2694, 3035, 3409, 3832, 4294, 4777, 5299, 5888, 6522, 7180, 7891, 8681, 9523, 10400, 11337, 12367, 13465
Offset: 0

Views

Author

Michael Somos, Mar 13 2020

Keywords

Comments

s(n) is a generalized Somos-5 sequence (A006721) having coefficients x, y in the recurrence numerator sum of products.

Examples

			a(7) = 4 because s(7) = x^3 + x^2*y + 2*x*y*z + y^2*z has 4 terms.
		

Crossrefs

Cf. A006721.

Programs

  • Mathematica
    a[ n_] := If[0 <= n <= 4, 1, RecurrenceTable[{s[m]*s[m - 5] == x*s[m - 1]*s[m - 4] + y*s[m - 2]*s[m - 3], s[0] == s[1] == s[2] == s[3] == s[4] == 1}, s, {m, Max[n, 4 - n]}] // Last // Factor // Expand // Length];

Formula

a(n) = a(4-n) for all n in Z.

A368481 The degree of polynomials related to Somos-5 sequences. Also for n > 4 the degree of the (n-4)-th involution in a family of involutions in the Cremona group of rank 4 defined by a Somos-5 sequence.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 4, 6, 9, 11, 14, 18, 22, 25, 30, 35, 40, 45, 52, 58, 64, 71, 79, 86, 94, 103, 112, 120, 130, 140, 150, 160, 172, 183, 194, 206, 219, 231, 244, 258, 272, 285, 300, 315, 330, 345, 362, 378, 394, 411, 429, 446, 464, 483, 502, 520, 540, 560, 580, 600, 622, 643, 664, 686, 709
Offset: 0

Views

Author

Helmut Ruhland, Dec 26 2023

Keywords

Comments

Let s(0), s(1), s(2), s(3), s(4) be the 5 initial values in a Somos-5 sequence. The following terms s(5), s(6), ... are rational expressions in the 5 initial values derived from the Somos-5 recurrence: s(n) = ( s(n-1)*s(n-4) + s(n-2)*s(n-3) ) / s(n-5). E.g., s(5) = (s(1)*s(4) + s(2)*s(3)) / s(0), s(6) = ... .
Because of the Laurent property of a Somos-5 sequence the denominator of these terms is a monomial in the initial values.
With the sequence e(n) = A333251(n), the tropical version of the Somos-5 sequence, the monomial D(n) is defined as Product_{k=0..4} s(k)^a(n-k). Define the polynomial G(n) to be s(n) * D(n). G(n) is 1 for n < 5, else G(n) is the numerator of s(n), so ..., G(3) = 1, G(4) = 1, G(5) = s(1)*s(4) + s(2)*s(3), ...
For n >= 0, a term a(n) of the actual sequence is the degree of G(n). The degree of the denominator of s(n) is a(n) - 1.
This Somos-5 sequence defines a family (proposed Somos family) S of (birational) involutions in Cr_4(R), the Cremona group of rank 4.
A Somos involution S(n) in this family is defined as S(n) : RP^4 -> RP^4, (s(0) : s(1) : s(2) : s(3) : s(4)) -> (s(n+4) : s(n+3) : s(n+2) : s(n+1) : s(n)). For n > 0 S(n) = (G(n+4) : G(n+3)*m1 : G(n+2)*m2 : G(n+1)*m3 : G(n)*m4 ), with m1, m2, m3, m4 monomials. The involutions generate an infinite dihedral group. Already 2 consecutive involutions S(n), S(n+1) generate this group too. This group as a dihedral group has 2 conjugacy classes { ..., S(0), S(2), S(4), ... } and { ..., S(1), S(3), S(5), ... } of involutions. The degree of such an involution S(n) equals the degree of G(n+4) and the term a(n+4) in the actual sequence.

Crossrefs

Programs

  • Maxima
    N : 5$ Len : 15$     /* Somos-N, N >= 2, Len = length of the calculated lists */
    NofRT : floor (N / 2)$  /* number of terms in a Somos-N recurrence */
    S : makelist (0, Len)$
    G : makelist (0, Len)$ DegG : makelist (0, Len)$   /* G, the numerator of s() */
    for i: 1 thru N do ( S[i] : s[i - 1], G[i] : 1, DegG[i] : 0 )$
       for i: N + 1 thru Len do (
          SS : 0,
          for j : 1 thru NofRT do (
           SS : SS + S[i - j] * S[i - N + j]
        ),
        S[i] : factor (SS / S[i - N]), G[i] : num (S[i]),
        /* for N > 3 G is a homogenous polynomial, take the first monomial to determine the degree */
        Mon : G[i], if N > 3 then ( Mon : args (Mon)[1] ),
        DegG[i] : 0, for j : 0 thru N - 1 do ( DegG[i] : DegG[i] + hipow (Mon, s[j])
       )
    )$
    args (DegG);

Formula

a(n) = 1 + e(n-4) + e(n-3) + e(n-2) + e(n-1) + e(n), where e(n) = A333251(n) is the exponent of one of the initial values in the denominator of s(n). - Andrey Zabolotskiy Jan 09 2024
The growth rate is quadratic, a(n) = (5/28) * n^2 + O(n).
G.f.: x^5 * (2+x-x^2+x^3+2*x^4) / ( (1-x)^3 * (x+1) * (x^6+x^5+x^4+x^3+x^2+x+1) ). - Joerg Arndt, Jan 14 2024

A058058 Generalized Somos-7 sequence: a(n)*a(n+7) = 3*a(n+1)*a(n+6) - 4*a(n+2)* a(n+5) + 4*a(n+3)*a(n+4).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 9, 19, 33, 131, 681, 3921, 23801, 132881, 598121, 7466321, 141401273, 1865484899, 19358862929, 314151573363, 7831607063961, 237725833277411, 8937694547422641, 293153245305595201, 7098035759907924561, 310194702846756799041, 35075042744420641281841
Offset: 1

Views

Author

Robert G. Wilson v, Nov 20 2000

Keywords

References

  • N. Elkies, posting to the NMBRTHRY(AT)LISTSERV.NODAK.EDU newsgroup, Nov. 2000.

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,1,1,1]; [n le 7 select I[n] else (3*Self(n-1)*Self(n-6) - 4*Self(n-2)*Self(n-5) + 4*Self(n-3)*Self(n-4))/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[1] =a[2] =a[3] =a[4] =a[5] =a[6] =a[7] =1; a[n_]:= a[n] = (3*a[n-1]*a[n-6] - 4*a[n-2]*a[n-5] + 4*a[n-3]*a[n-4])/a[n-7]; Table[ a[n], {n, 1, 35}]
  • PARI
    {a(n) = if (n <=7, 1, (3*a(n-1)*a(n-6) - 4*a(n-2)*a(n-5) + 4*a(n-3)*a(n-4))/a(n-7))};
    for(n=1, 30, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A078530 Bilinear recursive sequence.

Original entry on oeis.org

0, 3, 1, 1, 1, 1, 2, 3, 9, 27, 81, 729, 0, 59049, -531441, 14348907, -387420489, 10460353203, -564859072962, 22876792454961, -1853020188851841, 150094635296999121, -12157665459056928801, 2954312706550833698643, 0
Offset: 0

Views

Author

Michael Somos, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[{m = Mod[n, 12]}, Sign[m] * 2^Boole[m==6] * (-1)^(Mod[Floor[n/12], 2]*(n-1)) * 3^(Boole[m==0] + Floor[(n-4)^2/8])]; (* Michael Somos, Dec 10 2023 *)
  • PARI
    {a(n) = sign(n%12) * (1 + (n%12==6)) * (-1)^(n\12%2 * (n-1)) * 3^((n%12==0) + (n-4)^2\8)};

Formula

a(n) * a(n-8) = 81 * (a(n-2)*a(n-6) - 2*a(n-4)^2).
0 = a(n) * a(n-5) + 3 * a(n-1) * a(n-4) - 9 * a(n-2)*a(n-3).
a(12*n) = 0.
a(2*n+1) = a(-2*n+7) = a(4*n+2)/(81^(n-1)*(a(2*n-1)*a(2*n+2)^2 - a(2*n+3)*a(2*n)^2)) for all n in Z. - Michael Somos, Dec 10 2023
a(n+12) = -(-27)^(n+2) * a(n) for all n in Z. - Michael Somos, Dec 11 2023

A105236 a(n+5) = (a(n+4)*a(n+1) + 2*a(n+3)*a(n+2))/a(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 5, 11, 41, 233, 689, 5337, 49081, 458299, 3603685, 93208147, 1476087601, 27470407569, 816413467841, 43620306030449, 1172020019840081, 70063780891581107, 5804382690927311525, 511286588817798535899
Offset: 0

Views

Author

Andrew Hone, Apr 14 2005

Keywords

Comments

This is a bilinear recurrence of Somos 5 type, hence the terms a(n) are associated with a sequence of points P_n = P_0 + n*P on an elliptic curve E. In this case the curve E has integral j-invariant j=10976.

Crossrefs

Programs

  • Magma
    [n le 5 select 1 else (Self(n-1)*Self(n-4) +2*Self(n-2)*Self(n-3))/Self(n-5): n in [1..41]]; // G. C. Greubel, Nov 26 2022
    
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==1,a[n]==(2 a[-3+n] a[-2+n]+a[-4+n] a[-1+n])/a[-5+n]},a,{n,30}] (* Harvey P. Dale, Sep 15 2013 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A105236
      if (n<5): return 1
      else: return (a(n-1)*a(n-4) +2*a(n-2)*a(n-3))/a(n-5)
    [a(n) for n in range(41)] # G. C. Greubel, Nov 26 2022

A129982 Fibonacci numbers sandwiched between 1's.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 1, 5, 1, 8, 1, 13, 1, 21, 1, 34, 1, 55, 1, 89, 1, 144, 1, 233, 1, 377, 1, 610, 1, 987, 1, 1597, 1, 2584, 1, 4181, 1, 6765, 1, 10946, 1, 17711, 1, 28657, 1, 46368, 1, 75025, 1, 121393, 1, 196418, 1, 317811, 1, 514229, 1, 832040, 1, 1346269, 1
Offset: 0

Views

Author

Paul Curtz, Jun 14 2007

Keywords

Comments

This sequence is similar to Somos-5 (A006721). - Michael Somos, Aug 15 2014

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + x^5 + x^6 + 2*x^7 + x^8 + 3*x^9 + x^10 + ...
		

Crossrefs

Programs

  • Maple
    G := 1/(1-x^2)+x^3/(1-x^2-x^4); Gser := series(G, x = 0, 70); seq(coeff(Gser, x, n), n = 0 .. 65); # Emeric Deutsch, Jul 09 2007
  • Mathematica
    a[ n_] := If[ OddQ[n], Fibonacci[ Quotient[ n, 2]], 1]; (* Michael Somos, Aug 15 2014 *)
  • PARI
    {a(n) = if( n%2, fibonacci( n\2), 1)}; /* Michael Somos, Aug 15 2014 */

Formula

G.f.: (1 - x^2 + x^3 - x^4 - x^5) / (1 - 2*x^2 + x^6). - Michael Somos, Aug 15 2014
a(2-n) = (-1)^(mod(n, 4) == 1) * a(n) for all n in Z. - Michael Somos, Aug 15 2014
a(2*n) = 1, a(2*n + 1) = A000045(n) for all n in Z. - Michael Somos, Aug 15 2014
a(n) = 2*a(n-2) - a(n-6) for all n in Z. - Michael Somos, Aug 15 2014
0 = a(n)*a(n+5) - a(n+1)*a(n+4) - a(n+2)*a(n+3) for all even n in Z. - Michael Somos, Aug 15 2014
0 = a(n)*a(n+5) - a(n+1)*a(n+4) + a(n+2)*a(n+3) for all odd n in Z. - Michael Somos, Aug 15 2014

Extensions

More terms from Emeric Deutsch, Jul 09 2007

A272038 Somos's sequence {b(9,n)} defined in comment in A078495: a(0)=a(1)=...=a(20)=1; for n>=21, a(n)=(a(n-1)*a(n-20)+a(n-10)*a(n-11))/a(n-21).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 19, 31, 51, 81, 123, 179, 251, 341, 451, 1045, 1691, 2451, 3459, 4977, 7467, 11679, 18755, 30349, 48763, 100474, 282777, 679512, 1391391, 2547414, 4327101
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Ruby
    def b(k, n)
      b = Array.new(2 * k + 3, 1)
      (2 * k + 3..n).each{|i|
        j = (b[i - 1] * b[i - 2 * k - 2] + b[i - k - 1] * b[i - k - 2]) / b[i - 2 * k - 3].to_r
        j = j.to_i if j.denominator == 1
        b[i] = j
      }
      b[0..n]
    end
    p b(9, n) # Seiichi Manyama, May 04 2016
Previous Showing 21-30 of 32 results. Next