cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 108 results. Next

A059193 Engel expansion of 1/e = 0.367879... .

Original entry on oeis.org

3, 10, 28, 54, 88, 130, 180, 238, 304, 378, 460, 550, 648, 754, 868, 990, 1120, 1258, 1404, 1558, 1720, 1890, 2068, 2254, 2448, 2650, 2860, 3078, 3304, 3538, 3780, 4030, 4288, 4554, 4828, 5110, 5400, 5698, 6004, 6318, 6640, 6970, 7308, 7654, 8008, 8370, 8740
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • Friedrich Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[1/E, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)
    Join[{3}, Table[2*(2*n+1)*(n-1), {n, 1, 200}]] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
    Join[{3},LinearRecurrence[{3,-3,1},{10,28,54},50]] (* Harvey P. Dale, May 10 2012 *)
  • PARI
    Vec(x*(3 + x + 7*x^2 - 3*x^3)/(1-x)^3 + O(x^50)) \\ G. C. Greubel, Dec 27 2016

Formula

a(n) = 2*(2*n+1)*(n-1) (for n>1) follows from 1/e = Sum_{n>=1} (1/(2*n)! - 1/(2*n+1)!). - Helena Verrill (verrill(AT)math.lsu.edu), Jan 19 2004
a(1)=3, a(2)=10, a(1)=28, a(2)=54, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 10 2012
From G. C. Greubel, Dec 27 2016: (Start)
G.f.: x*(3 + x + 7*x^2 - 3*x^3)/(1-x)^3.
E.g.f.: 2 + 3*x + 2*(2*x^2 + x - 1)*exp(x). (End)
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = 7/9 - log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/9 + Pi/12 - log(2)/6. (End)

A067912 Engel expansion of zeta(4) = Pi^4/90 = Sum_{i>0} 1/i^4.

Original entry on oeis.org

1, 13, 15, 19, 132, 1474, 1977, 10392, 12992, 44777, 59412, 170685, 217607, 704791, 818133, 1387423, 2208674, 3206215, 12732462, 13962681, 24593168, 39744274, 55804517, 130269696, 426536424, 546807194, 1030799587, 1139987135
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]]; EngelExp[N[Pi^4/90, 7!], 20] (* G. C. Greubel, Dec 26 2016 *)

A118239 Engel expansion of cosh(1).

Original entry on oeis.org

1, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2006

Keywords

Comments

Differs from A002939 only in first term.
This sequence is also the Pierce expansion of cos(1). - G. C. Greubel, Nov 14 2016

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(2 n - 2) (2 n - 3), {n, 2, 50}]] (* Bruno Berselli, Aug 04 2015 *)
    Join[{1}, LinearRecurrence[{3,-3,1},{2,12,30},25]] (* G. C. Greubel, Oct 27 2016 *)
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Cos[1] , 7!], 50] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    a(n)=max(4*n^2-10*n+6, 1) \\ Charles R Greathouse IV, Oct 22 2014
    
  • Sage
    A118239 = lambda n: falling_factorial(n*2,2) if n>0 else 1
    print([A118239(n) for n in (0..46)]) # Peter Luschny, Aug 04 2015

Formula

a(n) = A002939(n-1) = 2*(n-1)*(2*n-3) for n>1.
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(1 - x + 9*x^2 - x^3)/(1-x)^3. (End)
E.g.f.: -6 + x + 2*(3 - 3*x + 2*x^2)*exp(x). - G. C. Greubel, Oct 27 2016
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = log(2) + 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - Pi/4 + log(2)/2. (End)

A130820 Decimal expansion of number whose Engel expansion is given by the sequence: 1,1,2,2,3,3,4,4,...ceiling(n/2),...

Original entry on oeis.org

2, 8, 7, 0, 2, 2, 2, 1, 5, 6, 9, 7, 3, 3, 9, 6, 3, 3, 0, 8, 1, 9, 4, 5, 8, 8, 6, 5, 8, 1, 1, 1, 9, 9, 6, 0, 1, 2, 4, 0, 3, 1, 9, 2, 6, 2, 2, 8, 0, 9, 9, 5, 7, 0, 1, 2, 0, 3, 1, 2, 7, 7, 3, 6, 2, 7, 2, 8, 5, 0, 3, 8, 0, 7, 6, 8, 0, 3, 7, 5, 2, 7, 8, 4, 5, 6, 3, 9, 2, 3, 6, 1, 5, 0, 7, 1, 4, 8, 2, 4
Offset: 1

Views

Author

Stephen Casey (hexomino(AT)gmail.com), Jul 17 2007

Keywords

Examples

			2.8702221569733963308194588658111996012403192622809957012...
		

References

  • Engel, F. "Entwicklung der Zahlen nach Stammbruechen" Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.

Crossrefs

Programs

  • Maple
    evalf(BesselI(0, 2) + BesselI(1, 2) - 1, 100); # Peter Bala, Jul 02 2016
  • Mathematica
    First@ RealDigits@ N[Sum[1/Product[Ceiling[r/2], {r, n}], {n, 1000}], 100] (* Original program amended to generate output by Michael De Vlieger, Jul 03 2016 *)
    RealDigits[3 - HypergeometricPFQ[{1, 1}, {3, 3, 3}, 1]/8, 10, 100][[1]] (* Vaclav Kotesovec, Jul 03 2016 *)

Formula

From Peter Bala, Jul 01 2016: (Start)
Constant c = 1/1 + 1/(1*1) + 1/(1*1*2) + 1/(1*1*2*2) + 1/(1*1*2*2*3) + 1/(1*1*2*2*3*3) + ... = Sum_{n >= 1} binomial(n,floor(n/2))/n!.
Alternative series representations:
c = 3 - Sum_{n >= 2} 1/(n*(n - 1)*n!^2);
c = 1 + Sum_{n >= 1} (n + 2)/(n!*(n + 1)!);
c = 5/3 + 1/3*Sum_{n >= 2} (n + 1)*(n + 2)/n!^2;
c = A070910 + A096789 - 1.
Continued fraction: c = 3 - 1/(8 - 4/(14 - 9/(32 - ... - (n-1)^2/(n^2 + n + 2 - ...)))). See comments in A141827. (End)

A182503 Engel expansion of the Dottie number, A003957.

Original entry on oeis.org

2, 3, 3, 4, 5, 15, 17, 66, 196, 233, 284, 375, 1613, 2131, 3574, 14122, 24171, 49097, 56871, 69361, 193406, 243145, 289951, 682749, 14501588, 21191773, 121635191, 810759781, 1292785381, 136110231377, 294401497761
Offset: 1

Views

Author

Ben Branman, May 02 2012

Keywords

Comments

Dottie number = 1/2 + 1/2/3 + 1/2/3/3 + 1/2/3/3/4 + 1/2/3/3/4/5 + 1/2/3/3/4/5/15 +...

Crossrefs

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; z = FindRoot[x == Cos[x], {x, 1}, WorkingPrecision -> 10000][[1, -1]]; EngelExp[z, 30]

A014012 Engel expansion of 1/Pi.

Original entry on oeis.org

4, 4, 11, 45, 70, 1111, 4423, 5478, 49340, 94388, 200677, 308749, 708066, 711391, 1113024, 4342375, 4529119, 8061070, 12060867, 56215509, 69737317, 124001030, 214920537, 471564389, 891380746, 4293367334, 5031151602, 9832878719, 15034446439, 15481444638
Offset: 1

Views

Author

Keywords

Crossrefs

See A006784 for definition.

Programs

  • Maple
    a(n):=proc(s)
    local
    i, j, max, aa, bb, lll, prod, S, T, kk;
        S := evalf(abs(s));
        max := 10^(Digits - 10);
        prod := 1;
        lll := [];
        while prod <= max do
            T := 1 + trunc(1/S);
            S := frac(S*T);
            lll := [op(lll), T];
            prod := prod*T
        end do;
        RETURN(lll)
    end;
    ### Enter a real number and the program will return the Engel expansion of that number, the number of terms is adjusted to the output
    # Simon Plouffe, Apr 23 2016
  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[1/Pi,7! ],50] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

A053977 Engel expansion of the Euler-Mascheroni constant gamma A001620 = 0.57721566... .

Original entry on oeis.org

2, 7, 13, 19, 85, 2601, 9602, 46268, 4812284, 147961485, 210810243, 814960948, 1003849128, 1016803038, 12917183059, 26242325020, 22215291139324, 30797877759859, 60139200644343, 121848657453426, 133555928335475
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 02 2000

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

Extensions

More terms and additional comments from Mitch Harris, Jan 15 2001

A053980 Engel expansion of zeta(3) = 1.20206... .

Original entry on oeis.org

1, 5, 98, 127, 923, 5474, 16490, 25355, 37910, 85150, 1033216, 2290644, 7844861, 11170684, 18884358, 21481832, 35060787, 52399788, 201059261, 261533994, 9939708446, 211698940106, 3030068839686, 4326424644987, 6082687570463
Offset: 1

Views

Author

Jeppe Stig Nielsen, Apr 02 2000

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[[ 1 ] ]#[[ 2 ] ]-1 ] ], Expand[ #[[ 1 ] ]#[[ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

Extensions

More terms and additional comments from Mitch Harris, Jan 15 2001

A059180 Engel expansion of log(2).

Original entry on oeis.org

2, 3, 7, 9, 104, 510, 1413, 2386, 40447, 87110, 124975, 1565154, 1766158, 2440919, 2637001, 9192874, 24998746, 73973182, 88828340, 432049320, 470421590, 477600793, 3313014448, 4571423959, 28839435286, 40818751774
Offset: 1

Views

Author

Keywords

Comments

See A006784 for the definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A002162 (decimal expansion of the natural logarithm of 2).

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Log[2], 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A059186 Engel expansion of Pi^2/6, or zeta(2) = 1.64493.

Original entry on oeis.org

1, 2, 4, 7, 9, 22, 35, 79, 2992, 3597, 17523, 28632, 41470, 53093, 57406, 14504930, 42622213, 188335162, 322429556, 1023003875, 1328535963, 3138645732, 11618168524, 137721814936, 156929353744, 166732460513, 813398686532
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Pi^2/6, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)
Previous Showing 21-30 of 108 results. Next