cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 108 results. Next

A067919 Engel expansion of sin(1).

Original entry on oeis.org

2, 2, 3, 11, 14, 27, 28, 66, 212, 231, 552, 2842, 3774, 6038, 6784, 10950, 32948, 78591, 97875, 98342, 123569, 139837, 159698, 1102838, 3256476, 20329622, 34385124, 60999878, 82669919, 85820365, 389915995, 4274338879, 18907353107, 62875944378, 74931184173
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Examples

			sin(1) = 0.84147... = A049469 has the Engel expansion 1/2 + 1/(2*2) + 1/(2*2*3) + ...
		

Crossrefs

See A006784 for explanation of Engel expansions.

Programs

  • Mathematica
    EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[Sin[1],6! ],50] (* Vladimir Joseph Stephan Orlovsky, Jun 13 2009 *)
  • PARI
    s=sin(1); for(i=1,30,s=s*ceil(1/s)-1; print1(ceil(1/s),","); );

Extensions

a(1) inserted by Hauke Worpel (hw1(AT)email.com), Jun 01 2003
Edited by N. J. A. Sloane, Nov 01 2008 at the suggestion of R. J. Mathar

A068379 Engel expansion of sinh(1/2).

Original entry on oeis.org

2, 24, 80, 168, 288, 440, 624, 840, 1088, 1368, 1680, 2024, 2400, 2808, 3248, 3720, 4224, 4760, 5328, 5928, 6560, 7224, 7920, 8648, 9408, 10200, 11024, 11880, 12768, 13688, 14640, 15624, 16640, 17688, 18768, 19880, 21024, 22200, 23408, 24648, 25920, 27224, 28560
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

Cf. A006784 for Engel expansion definition.
The MathWorld link mentions the closed form of the Engel expansion of sinh(1) = A068377. - Georg Fischer, Nov 22 2020

Examples

			sinh(1/2) = 1/2 + 1/(2*24) + 1/(2*24*80) + 1/(2*24*80*168) + 1/(2*24*80*168*288) + ... = 0.52109530549374736162242562641... = A334367.
		

Crossrefs

Programs

Formula

a(n) = 8*(n*(2*n-3)+1) for n > 1, a(1)=2.
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
G.f.: 2*x*(1+9*x+7*x^2-x^3)/(1-x)^3. (End)
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = (3-log(2))/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/4 - Pi/16 - log(2)/8. (End)
From Elmo R. Oliveira, May 29 2025: (Start)
E.g.f.: 2*(4*exp(x)*(1 - x + 2*x^2) + (x - 4)).
a(n) = 2*A033586(n-1) for n >= 2.
a(n) = 4*A002943(n-1) for n >= 2. (End)

Extensions

Edited, offset 1 and a(1)=2 in programs and b-file by Georg Fischer, Nov 22 2020

A068380 Engel expansion of sinh(1/3).

Original entry on oeis.org

3, 54, 180, 378, 648, 990, 1404, 1890, 2448, 3078, 3780, 4554, 5400, 6318, 7308, 8370, 9504, 10710, 11988, 13338, 14760, 16254, 17820, 19458, 21168, 22950, 24804, 26730, 28728, 30798, 32940, 35154, 37440, 39798, 42228, 44730, 47304, 49950, 52668, 55458, 58320, 61254
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

Cf. A006784 for the definition of the Engel expansion.
The MathWorld link mentions the closed form of the Engel expansion of sinh(1). - Georg Fischer, Nov 22 2020

Examples

			sinh(1/3) = 1/3 + 1/(3*54) + 1/(3*54*180) + 1/(3*54*180*378) + 1/(3*54*180*378*648) + ... = 0.33954055725615013910126061...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {3, 54, 180, 378}, 50]
  • PARI
    a(n)=if(n<=1, 3, 18*(n*(2*n-3)+1));
    
  • PARI
    my(x='x+O('x^43)); Vec(3*x*(1+15*x+9*x^2-x^3)/(1-x)^3) \\ Elmo R. Oliveira, May 29 2025

Formula

a(n) = 18*(n*(2*n-3)+1) for n > 1, a(1)=3. - Ralf Stephan, Sep 03 2003
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
G.f.: 3*x*(x^3-9*x^2-15*x-1)/(x-1)^3. (End)
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = (4-log(2))/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4/9 - Pi/36 - log(2)/18. (End)
From Elmo R. Oliveira, May 29 2025: (Start)
E.g.f.: 3*(6*exp(x)*(1 - x + 2*x^2) + (x - 6)).
a(n) = 9*A002943(n-1) for n >= 2. (End)

Extensions

Edited, offset 1 and a(1)=3 by Georg Fischer, Nov 23 2020
More terms from Elmo R. Oliveira, May 29 2025

A225208 Engel expansion of the positive root of x^x^x^x = 2.

Original entry on oeis.org

1, 3, 3, 52, 106, 260, 279, 334, 491, 536, 728, 1161, 5678, 15183, 41437, 189034, 281965, 1118629, 3473978, 32869874, 82525851, 159312757, 424570638, 472381891, 563118608, 579529452, 1426303902, 2330077798, 2991863700, 25850322702, 34547004920, 37294688664
Offset: 1

Views

Author

Alois P. Heinz, May 01 2013

Keywords

Comments

It is not known if the positive root of x^x^x^x = 2 is a rational number and, in consequence, whether this sequence is finite or not.

Examples

			1.44660143242986417459733398759766148...
		

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A225134 (decimal expansion), A225153 (continued fraction).

Programs

  • Maple
    Digits:= 500:
    c:= solve(x^(x^(x^x))=2, x):
    engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r),
            engel(r*ceil(1/r)-1, n-1)][]):
    engel(evalf(c), 39);

A248917 a(n) = 2^n * n^2 + 1.

Original entry on oeis.org

1, 3, 17, 73, 257, 801, 2305, 6273, 16385, 41473, 102401, 247809, 589825, 1384449, 3211265, 7372801, 16777217, 37879809, 84934657, 189267969, 419430401, 924844033, 2030043137, 4437573633, 9663676417, 20971520001, 45365592065, 97844723713, 210453397505, 451508436993
Offset: 0

Views

Author

Paul Curtz, Oct 22 2014

Keywords

Comments

Binomial transform of A118239 (Engel expansion of cosh(1)).
Table of successive differences of a(n):
1, 3, 17, 73, 257, 801, 2305,...
2, 14, 56, 184, 544, 1504,...
12, 42, 128, 360, 960,...
30, 86, 232, 600,...
56, 146, 368,...
90, 222,...
132,...
etc.
Via b(n) = 0, 0, 0 followed by A055580(n), i.e., 0, 0, 0, 1, 7, 31, 111, ... (the main sequence for the recurrence), a link can be found between a(n) and A002064(n): c(n) = b(n+1) - 2*b(n) = 0, 0, 1, 5, 17, 49, 129, ... (the main sequence for the signature (5, -8, 4)).

Examples

			a(3) = 9 * 8 + 1 = 73.
a(4) = 16 * 16 + 1 = 257.
a(5) = 25 * 32 + 1 = 801.
		

Crossrefs

Cf. A000225, A002064 (Cullen numbers), A006784, A007758, A055580, A118239, A168298.

Programs

  • Magma
    [2^n*n^2+1: n in [0..30]]; // Vincenzo Librandi, Oct 29 2016
  • Mathematica
    Table[n^2 * 2^n + 1, {n, 0, 31}] (* Alonso del Arte, Oct 22 2014 *)
    LinearRecurrence[{7,-18,20,-8}, {1,3,17,73}, 25] (* G. C. Greubel, Oct 28 2016 *)
  • PARI
    Vec(-(12*x^3-14*x^2+4*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Oct 22 2014
    
  • PARI
    a(n)=n^2<Charles R Greathouse IV, Oct 22 2014
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2) + 2^(n+1) + 1.
a(n) = A007758(n) + 1.
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 8*a(n-4). - Jean-François Alcover, Oct 22 2014
G.f.: -(12*x^3-14*x^2+4*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Oct 22 2014
E.g.f.: exp(x) + 2*x*(1 + 2*x)*exp(2*x). - G. C. Greubel, Oct 28 2016

A059176 Engel expansion of sqrt(5) = 2.23606...

Original entry on oeis.org

1, 1, 5, 6, 13, 16, 16, 38, 48, 58, 104, 177, 263, 332, 389, 4102, 4575, 5081, 9962, 18316, 86613, 233239, 342534, 964372, 1452850, 7037119, 7339713, 8270361, 12855437, 15900982, 19211148, 1365302354, 1565752087, 1731612283
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A002163.
Essentially the same as A028259.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Sqrt[5], 7!], 50] (* modified by G. C. Greubel, Dec 26 2016 *)

A059194 Engel expansion of 1/e^2 = 0.135335... .

Original entry on oeis.org

8, 13, 14, 21, 87, 92, 119, 444, 472, 473, 548, 5380, 7995, 100393, 589494, 2034930, 12322338, 21633910, 55986423, 164342975, 6502609245, 22562439736, 26621735244, 39286977900, 576511092268, 892451075829, 1050206120774, 2228669763793, 3336969029043
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A092553.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[1/E^2, 7!], 100] (* Modified by G. C. Greubel, Dec 28 2016 *)

A059195 Engel expansion of log(Pi) = 1.14473... .

Original entry on oeis.org

1, 7, 77, 107, 150, 167, 7091, 27852, 31790, 34069, 327724, 416403, 4669290, 20206510, 2218014305, 4524826037, 4576058224, 5496581959, 15869888136, 91151928112, 104430320239, 202761572952, 218933128153, 937032410920, 1044739832405, 15262515810234
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A053510.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Log[Pi], 7!], 100] (* Modified by G. C. Greubel, Dec 28 2016 *)

A059200 Engel expansion of -log(log(2)) = 0.36651292... .

Original entry on oeis.org

3, 11, 11, 23, 62, 66, 466, 1450, 7617, 95677, 100963, 153329, 966054, 4744661, 23899231, 25086529, 52363821, 100389201, 201892089, 261170111, 312778184, 527002514, 1235004065, 1623652949, 2309078745, 8274570969
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A074785.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[-Log[Log[2]], 7!], 100] (* Modified by G. C. Greubel, Dec 28 2016 *)

A060787 a(n) = 18*(n - 2)*(2*n - 5).

Original entry on oeis.org

0, 18, 108, 270, 504, 810, 1188, 1638, 2160, 2754, 3420, 4158, 4968, 5850, 6804, 7830, 8928, 10098, 11340, 12654, 14040, 15498, 17028, 18630, 20304, 22050, 23868, 25758, 27720, 29754, 31860, 34038, 36288, 38610, 41004, 43470, 46008, 48618, 51300, 54054, 56880, 59778
Offset: 2

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Apr 28 2001

Keywords

Comments

Except for first term Engel expansion of cosh(1/3); cf. A006784 for Engel expansion definition. - Benoit Cloitre, Mar 03 2002

References

  • Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. p. 341.
  • Henri Brocard and Timoléon Lemoyne, Courbes géométriques remarquables (courbes spéciales) Planes et Gauches. Tome I, Paris: Albert Blanchard, 1967 [First publ. 1919]; see p. 135.

Crossrefs

Cf. A006784.

Programs

  • Mathematica
    a[n_] := 18*(n-2)*(2*n-5); Array[a, 50, 2] (* Amiram Eldar, May 05 2025 *)
  • PARI
    a(n) = 18*(n - 2)*(2*n - 5) \\ Harry J. Smith, Jul 11 2009

Formula

G.f.: 18*x^3*(1 + 3*x)/(1 - x)^3. - Colin Barker, Feb 29 2012
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=3} 1/a(n) = log(2)/9.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi/36 - log(2)/18. (End)
Previous Showing 31-40 of 108 results. Next