cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 66 results. Next

A316675 Triangle read by rows: T(n,k) gives the number of ways to stack n triangles in a valley so that the right wall has k triangles for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 4, 3, 4, 3, 2, 1, 1, 1, 0, 0, 1, 1, 5, 4, 5, 4, 3, 2, 1, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 10 2018

Keywords

Examples

			T(8,4) = 3.
    *                             *
   / \                           / \
  *---*   *     *---*---*       *---*
   \ / \ / \     \ / \ / \     / \ / \
    *---*---*     *---*---*   *---*---*
     \ / \ /       \ / \ /     \ / \ /
      *---*         *---*       *---*
       \ /           \ /         \ /
        *             *           *
Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 1;
  0, 0, 1, 1, 1;
  0, 0, 1, 1, 1, 1;
  0, 0, 1, 1, 1, 1,  1;
  0, 0, 1, 1, 2, 1,  1,  1;
  0, 0, 1, 1, 3, 2,  1,  1,  1;
  0, 0, 1, 1, 3, 3,  2,  1,  1,  1;
  0, 0, 1, 1, 3, 3,  3,  2,  1,  1,  1;
  0, 0, 1, 1, 4, 3,  4,  3,  2,  1,  1, 1;
  0, 0, 1, 1, 5, 4,  5,  4,  3,  2,  1, 1, 1;
  0, 0, 1, 1, 5, 5,  6,  5,  4,  3,  2, 1, 1, 1;
  0, 0, 1, 1, 5, 5,  8,  6,  5,  4,  3, 2, 1, 1, 1;
  0, 0, 1, 1, 6, 5, 10,  8,  7,  5,  4, 3, 2, 1, 1, 1;
  0, 0, 1, 1, 7, 6, 11, 10, 10,  7,  5, 4, 3, 2, 1, 1, 1;
  0, 0, 1, 1, 7, 7, 13, 11, 12, 10,  7, 5, 4, 3, 2, 1, 1, 1;
  0, 0, 1, 1, 7, 7, 16, 13, 14, 12, 10, 7, 5, 4, 3, 2, 1, 1, 1;
  ...
		

Crossrefs

Row sums give A006950.
Sums of even columns give A059777.
Cf. A072233.

Formula

For m >= 0,
Sum_{n>=2m} T(n,2m) *x^n = x^(2m) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).
Sum_{n>=2m+1} T(n,2m+1)*x^n = x^(2m+1) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).

A059777 Number of self-conjugate three-quadrant Ferrers graphs that partition n.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 16, 19, 24, 31, 39, 47, 58, 72, 89, 107, 129, 158, 192, 228, 273, 329, 393, 465, 551, 655, 776, 911, 1070, 1261, 1480, 1726, 2014, 2354, 2742, 3180, 3688, 4279, 4954, 5716, 6590, 7603, 8754, 10049, 11532
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2001

Keywords

References

  • G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.

Crossrefs

Programs

  • Maple
    mul((1+q^(2*n+3))/(1-q^(2*n+2)), n=0..101); # g.f.
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k + 1))/(1 - x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2016 *)

Formula

G.f.: 1/((1+x)*Sum_{k>=0} (-x)^(k*(k+1)/2)). [Corrected by N. J. A. Sloane, Jul 10 2022 at the suggestion of Eduardo Brietzke.] a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*(A002129(k)-1)*a(n-k). A006950(n) = a(n-1) + a(n), n > 0. - Vladeta Jovovic, Sep 22 2002
G.f.: 1/((1+x)*G(0)), where G(k)= 1 - x^(2*k+1)/(1 - x^(2*k+2)/(x^(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
G.f.: conjecture: 1/(Q(0) - 1), where Q(k) = 1 + (-x)^k - (-x)^(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2013
a(n) ~ exp(sqrt(n/2)*Pi)/(8*sqrt(2)*n). - Vaclav Kotesovec, Sep 26 2016
G.f.: Sum_{k>=0} x^(2*k) * Product_{j=1..k} (1+x^(2*j-1))/(1-x^(2*j)). - Seiichi Manyama, Jul 11 2018

A096981 Number of partitions of n into parts congruent to {0, 1, 3, 5} mod 6.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 12, 15, 21, 25, 30, 39, 46, 56, 72, 85, 101, 125, 147, 175, 215, 252, 296, 356, 415, 487, 582, 676, 786, 927, 1072, 1244, 1460, 1682, 1939, 2255, 2588, 2976, 3446, 3942, 4510, 5189, 5916, 6751, 7739, 8797, 9999, 11406, 12927, 14657
Offset: 0

Views

Author

Noureddine Chair, Aug 19 2004

Keywords

Comments

Also, number of partitions of n in which the distinct parts are prime to 3 and the unrestricted parts are multiples of 3.
The inverted graded parafermionic partition function. This g.f. is a generalization of A003105, A006950 and A096938

Examples

			a(11) = 15 because we can write 11 = 10+1 = 8+2+1 = 7+4 = 5+4+2 (parts do not contain multiple of 3) = 9+2 = 8+3 = 7+3+1 = 6+5 = 6+4+1 = 6+3+2 = 5+3+3 = 5+3+2+1 = 4+3+3+1 = 3+3+3+2.
1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 10*x^9 + ...
q^-5 + q^19 + q^43 + 2*q^67 + 2*q^91 + 3*q^115 + 5*q^139 + 6*q^163 + 7*q^187 + ...
		

References

  • T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976

Crossrefs

Programs

  • Haskell
    a096981 = p $ tail a047273_list where
       p _  0         = 1
       p ks'@(k:ks) m = if k > m then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)), k=1..150), x=0,100);
  • Mathematica
    CoefficientList[ Series[ Product[ 1/(1 - x^k + x^(2k) - x^(3k) + x^(4k) - x^(5k)), {k, 55}], {x, 0, 53}], x] (* Robert G. Wilson v, Aug 21 2004 *)
    nmax = 100; CoefficientList[Series[x^3*QPochhammer[-1/x^2, x^3] * QPochhammer[-1/x, x^3]/((1 + x)*(1 + x^2) * QPochhammer[x^3, x^3]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / (eta(x + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 08 2012 */
    

Formula

Expansion of q^(5/24) * eta(q^2) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jun 08 2012
Euler transform of period 6 sequence [1, 0, 1, 0, 1, 1, ...]. - Vladeta Jovovic, Aug 20 2004
G.f.: 1/product_{k>=1}(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)) = Product_{k>=1}(1+x^(3*k-1))(1+x^(3*k-2))/(1-x^(3*k)).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(6)*n). - Vaclav Kotesovec, Aug 31 2015

Extensions

Better definition from Vladeta Jovovic, Aug 20 2004
More terms from Robert G. Wilson v, Aug 21 2004
Incorrect b-file replaced by Vaclav Kotesovec, Aug 31 2015

A273225 Number of bipartitions of n wherein odd parts are distinct (and even parts are unrestricted).

Original entry on oeis.org

1, 2, 3, 6, 11, 18, 28, 44, 69, 104, 152, 222, 323, 460, 645, 902, 1254, 1722, 2343, 3174, 4278, 5722, 7601, 10056, 13250, 17358, 22623, 29382, 38021, 48984, 62857, 80404, 102528, 130282, 165002, 208398, 262495, 329666, 412878, 515840
Offset: 0

Views

Author

M.S. Mahadeva Naika, May 18 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of bipartitions of 'n' wherein odd parts are distinct (and even parts are unrestricted).
G.f. is the square of the g.f. of A006950. - Vaclav Kotesovec, Mar 25 2017

Examples

			a(4)=11 because "(0,4)=(0,3+1)=(0,2+2)=(1,3)=(1,2+1)=(2,2)=(4,0)=(3+1,0)=(2+2,0)=(3,1)=(2+1,1)".
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 28*x^6 + 44*x^7 + ... - _Michael Somos_, Mar 02 2019
G.f. = q^-1 + 2*q^3 + 3*q^7 + 6*q^11 + 11*q^15 + 18*q^19 + 28*q^23 + ... - _Michael Somos_, Mar 02 2019
		

Crossrefs

For a version with signs see A274621.
Cf. A006950.

Programs

  • Maple
    Digits:=200:with(PolynomialTools): with(qseries): with(ListTools):
    GenFun:=series(etaq(q,2,100)^2/etaq(q,1,100)^2/etaq(q,4,100)^2,q,50):
    CoefficientList(sort(convert(GenFun,polynom),q,ascending),q);
  • Mathematica
    s = QPochhammer[-1, x]^2/(4*QPochhammer[x^4, x^4]^2) + O[x]^40; CoefficientList[s, x] (* Jean-François Alcover, May 20 2016 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2, x^4] / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, Mar 02 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0 , A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A))^2, n))}; /* Michael Somos, Mar 02 2019 */

Formula

G.f.: Product_{k>=1} (1 + x^k)^2 / (1 - x^(4*k))^2, corrected by Vaclav Kotesovec, Mar 25 2017
Expansion of 1 / psi(-x)^2 in powers of x where psi() is a Ramanujan theta function.
a(n) ~ exp(Pi*sqrt(n))/(2^(5/2)*n^(5/4)). - Vaclav Kotesovec, Jul 05 2016
Euler transform of period 4 sequence [2, 0, 2, 2, ...]. - Michael Somos, Mar 02 2019

A296045 a(n) = [x^n] Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^n.

Original entry on oeis.org

1, 1, 3, 13, 55, 231, 981, 4222, 18351, 80320, 353453, 1562364, 6932185, 30856541, 137725710, 616190583, 2762605791, 12408541299, 55825435656, 251523510045, 1134741006825, 5125453110196, 23175983361270, 104899547541255, 475228898015025, 2154737528486881, 9777332125043577
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^(4 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[(2 (-x)^(1/8)/EllipticTheta[2, 0, Sqrt[-x]])^n, {x, 0, n}], {n, 0, 26}]
    Table[(-1)^n * 2^n * SeriesCoefficient[1/(QPochhammer[-1, x]*QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 07 2020 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, 4/Sqrt[Pi*(77/2 - 4*s*(-r*s)^(7/8) * Derivative[0, 0, 2][EllipticTheta][2, 0, Sqrt[-r*s]])]} /. FindRoot[{s == (2*(-r*s)^(1/8))/EllipticTheta[2, 0, Sqrt[-r*s]], 7*I*r + 2*(-r*s)^(7/8)*Sqrt[r*s] * Derivative[0, 0, 1][EllipticTheta][2, 0, Sqrt[-r*s]] == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 - x^(4*k)))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.62579056836776492108784045382518984897... (see A192540) and c = 0.255113338880004277664416308115912337... - Vaclav Kotesovec, Dec 05 2017

A316384 Number of ways to stack n triangles symmetrically in a valley (pointing upwards or downwards depending on row parity).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 5, 2, 5, 2, 6, 3, 8, 4, 9, 4, 10, 4, 12, 6, 15, 7, 17, 7, 19, 8, 22, 10, 26, 12, 30, 13, 33, 14, 38, 17, 45, 21, 51, 22, 56, 24, 64, 29, 74, 33, 83, 36, 92, 40, 104, 46, 119, 53, 133, 58, 147, 63, 165, 73, 187, 83, 208, 90
Offset: 0

Views

Author

Seiichi Manyama, Jun 30 2018

Keywords

Comments

*
/ \
*-*-*-*-*
\ / \ /
*---*
\ /
*
Such a way to stack is not allowed.
From George Beck, Jul 28 2023: (Start)
Equivalently, a(n) is the number of partitions of n such that the 2-modular Ferrers diagram is symmetric.
The first example for n = 16 below corresponds to the partition 9 + 2 + 2 + 2 + 1 with 2-modular Ferrers diagram:
2 2 2 2 1
2
2
2
1
(End)

Examples

			a(16) = 4.
                                 *   *
                                / \ / \
     *---*---*---*---*         *---*---*
      \ / \ / \ / \ /         / \ / \ / \
       *---*---*---*         *---*---*---*
        \ / \ / \ /           \ / \ / \ /
         *---*---*             *---*---*
          \ / \ /               \ / \ /
           *---*                 *---*
            \ /                   \ /
             *                     *
   *---*           *---*     *           *
    \ / \         / \ /     / \         / \
     *---*       *---*     *---*   *   *---*
      \ / \     / \ /       \ / \ / \ / \ /
       *---*   *---*         *---*---*---*
        \ / \ / \ /           \ / \ / \ /
         *---*---*             *---*---*
          \ / \ /               \ / \ /
           *---*                 *---*
            \ /                   \ /
             *                     *
a(17) = 2.
           *---*         *---*           *---*
          / \ / \         \ / \         / \ /
         *---*---*         *---*       *---*
        / \ / \ / \         \ / \     / \ /
       *---*---*---*         *---*---*---*
        \ / \ / \ /           \ / \ / \ /
         *---*---*             *---*---*
          \ / \ /               \ / \ /
           *---*                 *---*
            \ /                   \ /
             *                     *
		

Crossrefs

Cf. A000700 (number of symmetric Ferrers graphs with n nodes), A006950 (number of ways to stack n triangles in a valley), A029838, A036015, A036016, A082303.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[(QPochhammer[x^6, x^16]*QPochhammer[x^10, x^16] + x*QPochhammer[x^2, x^16]*QPochhammer[x^14, x^16])/(QPochhammer[x^2, x^4] * QPochhammer[x^8, x^16]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 08 2023 *)
  • Ruby
    def s(k, n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0 && i % k == 0}
      s
    end
    def A(ary, n)
      a_ary = [1]
      a = [0] + (1..n).map{|i| ary.inject(0){|s, j| s + j[1] * s(j[0], i)}}
      (1..n).each{|i| a_ary << (1..i).inject(0){|s, j| s - a[j] * a_ary[-j]} / i}
      a_ary
    end
    def A316384(n)
      A([[1, 1], [4, -1]], n).map{|i| i.abs}
    end
    p A316384(100)

Formula

a(2n+1) = A036015(n).
a(2n ) = A036016(n).
a(n) = |A029838(n)| = |A082303(n)|.
Euler transform of period 16 sequence [1, 0, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 0, 1, 0, ...].
a(n) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 08 2023
G.f.: Product_{k>=1} 1/((1 - x^(16*k-2))*(1 - x^(16*k-8))*(1 - x^(16*k-14))) + x*Product_{k>=1} 1/((1 - x^(16*k-6))*(1 - x^(16*k-8))*(1 - x^(16*k-10))). - Vaclav Kotesovec, Feb 08 2023

A340647 G.f.: Sum_{k>=0} x^(k^2) / Product_{j=1..k} (1 - x^(2*j))^2.

Original entry on oeis.org

1, 1, 0, 2, 1, 3, 2, 4, 5, 6, 8, 8, 14, 12, 20, 18, 31, 27, 42, 40, 60, 60, 80, 86, 111, 124, 146, 174, 199, 241, 262, 328, 353, 444, 464, 590, 620, 780, 812, 1020, 1075, 1326, 1400, 1710, 1833, 2198, 2370, 2804, 3072, 3570, 3936, 4522, 5048, 5713, 6414, 7190
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 14 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k^2)/Product[(1-x^(2*j))^2, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) = A006950(n) - A340623(n).
a(n) ~ exp(Pi*sqrt(n/2)) / (4*sqrt(2)*n).

A192540 G.f.: A(x) = Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (-x)^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 2, 6, 20, 70, 255, 960, 3707, 14597, 58382, 236522, 968597, 4003061, 16674858, 69936760, 295092057, 1251747436, 5334958079, 22834290248, 98108081192, 422986894605, 1829443421394, 7935301625600, 34510975557383, 150456011512671, 657415433062780
Offset: 1

Views

Author

Paul D. Hanna, Jul 03 2011

Keywords

Comments

Related q-series: Sum_{n>=0} (-q)^(n*(n+1)/2) = q^(-1/8)*eta(q)*eta(q^4)/eta(q^2) is a g.f. of A106459.

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 70*x^6 + 255*x^7 + ...
The g.f. A = A(x) satisfies the following relations:
(1) A = x/(1 - A - A^3 + A^6 + A^10 - A^15 - A^21 + A^28 + A^36 + ...).
(2) A = x/((1-A)*(1+A^2)* (1-A^2)*(1+A^4)* (1-A^3)*(1+A^6)* (1-A^4)*(1+A^8)*...).
(3) A = x/((1-A)*(1-A^4)* (1-A^3)*(1-A^8)* (1-A^5)*(1-A^12)* (1-A^7)*(1-A^16)*...).
(4) A = x*(1+A)/(1-A^2)* (1+A^3)/(1-A^4)* (1+A^5)/(1-A^6) * (1+A^7)/(1-A^8)*...
(5) A = x*(1-A^2)/(1-A)* (1-A^6)/(1-A^2)* (1-A^10)/(1-A^3)* (1-A^14)/(1-A^4)*...
(6) A = x*exp(A/(1-A) - A^2/(2*(1+A^2)) + A^3/(3*(1-A^3)) - A^4/(4*(1+A^4)) + ...).
(7) A = x*exp(A + A^2/2 + 4*A^3/3 + 5*A^4/4 + 6*A^5/5 +...+ A113184(n)*A^n/n + ...).
		

Crossrefs

Programs

  • Maple
    nmax:=27: with(gfun): f := proc(x): x*add((-x)^(n*(n+1)/2),n=0..nmax) end: S:=series(f(x),x,nmax): g:= seriestoseries(S,'revogf'): seq(coeftayl (g,x=0,n),n=1..nmax); # Johannes W. Meijer, Jul 04 2011
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*EllipticTheta[2, 0, Sqrt[-x]] / (2*(-x)^(1/8)), {x, 0, 30}], x], x]] (* Vaclav Kotesovec, Aug 17 2015 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, 8*(s/Sqrt[2*Pi*(77 - 8*(-s)^(7/8) *s*(Derivative[0, 0, 2][EllipticTheta][2, 0, Sqrt[-s]] / r))])} /. FindRoot[{2*r == -(-s)^(7/8)*EllipticTheta[2, 0, Sqrt[-s]], 2*(-s)^(11/8)*Derivative[0, 0, 1][EllipticTheta][2, 0, Sqrt[-s]] == 7*r}, {r, 1/5}, {s, 1/2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
  • PARI
    {a(n)=polcoeff(serreverse(x*sum(m=0,sqrtint(2*n)+1,(-x)^(m*(m+1)/2)+x*O(x^n))),n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x/prod(m=1,n,(1 - A^m)*(1 + A^(2*m))+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x/prod(m=1,n\2,(1 - A^(2*m-1))*(1 - A^(4*m))+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*prod(m=1,n\2,(1 + A^(2*m-1))/(1 - A^(2*m)+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*prod(m=1,n,(1 - A^(4*m-2))/(1 - A^m+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2); for(i=1, n, A=x*exp(sum(m=1, n, -(-A+x*O(x^n))^m/(1+(-A)^m)/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=if(n<1,0,(1/n)*polcoeff(x/prod(k=1,n,(1-x^k)*(1+x^(2*k)+x*O(x^n)))^n,n))}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*exp(sum(m=1,n, A^m*sumdiv(m,d,(-1)^(m-d)*d)/m)+x*O(x^n)));polcoeff(A,n)}

Formula

G.f. satisfies:
(1) A(x) = x/[Sum_{n>=0} (-A(x))^(n*(n+1)/2)].
(2) A(x) = x/[Product_{n>=1} (1 - A(x)^n)*(1 + A(x)^(2*n))].
(3) A(x) = x/[Product_{n>=1} (1 - A(x)^(2*n-1))*(1 - A(x)^(4*n))].
(4) A(x) = x* Product_{n>=1} (1 + A(x)^(2*n-1))/(1 - A(x)^(2*n)).
(5) A(x) = x* Product_{n>=1} (1 - A(x)^(4*n-2))/(1 - A(x)^n).
(6) A(x) = x* exp( Sum_{n>=1} -(-A(x))^n/(n*(1 + (-A(x))^n)) ).
(7) A(x) = x* exp( Sum_{n>=1} A(x)^n*Sum_{d|n} (-1)^(n-d)*d/n ).
a(n) = [x^n] (1/n)*x/[Product_{k>=1} (1 - x^k)*(1 + x^(2*k))]^n for n >= 1.
a(n) ~ c * d^n / n^(3/2), where d = 4.6257905683677649210878404538251898489748116820946869227688637924996..., c = 0.1001072494040204029591345793571534412084516176488795... . - Vaclav Kotesovec, Aug 17 2015

A266462 The number of conjugacy classes of invertible n X n matrices over GF(2) which are squares of other such matrices.

Original entry on oeis.org

1, 1, 2, 5, 10, 20, 41, 82, 166, 334, 667, 1336, 2682, 5360, 10724, 21467, 42936, 85876, 171786, 343574, 687184, 1374427, 2748852, 5497766, 10995706, 21991402, 43982908, 87966150, 175932383, 351864964, 703730584, 1407461288, 2814923196, 5629847656, 11259695532
Offset: 0

Views

Author

Victor S. Miller, Dec 29 2015

Keywords

Comments

It follows from the form of the generating function that a(n) is asymptotic to alpha*2^n where alpha = Product_{m>=1} (1-(1/16)^m)*(1-2*(1/4)^m)/((1-2*(1/16)^m)*(1-(1/4)^m)). [corrected by Jason Yuen, May 19 2025]

Crossrefs

Cf. A006950.

Programs

  • Mathematica
    terms = 35; CoefficientList[Product[(1-2x^(2n))(1-x^(2n))/((1-2x^n) (1-2x^(4n))(1+x^(2n-1))), {n, 1, terms}] + O[x]^terms, x] (* Jean-François Alcover, Aug 06 2018 *)

Formula

G.f.: Product_{n>=1} (1-2*x^(2*n))*(1-x^(2*n))/((1-2*x^n)*(1-2*x^(4*n))*(1+x^(2*n-1))).

Extensions

More terms from Alois P. Heinz, Dec 29 2015

A285458 Expansion of Product_{k>=1} ((1 + x^k) / (1 - x^(4*k)))^k.

Original entry on oeis.org

1, 1, 2, 5, 9, 17, 30, 54, 94, 161, 269, 449, 740, 1200, 1930, 3083, 4877, 7650, 11919, 18444, 28363, 43341, 65848, 99523, 149654, 223901, 333448, 494427, 729996, 1073408, 1572264, 2294389, 3336191, 4834261, 6981727, 10050944, 14424665, 20639641, 29447118
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^(4*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * (13*Zeta(3))^(1/3) * n^(2/3) / 4) * (13*Zeta(3))^(7/36) / (2 * A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
Previous Showing 31-40 of 66 results. Next