cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 72 results. Next

A087161 Records in A087159, i.e., A087159(a(n)) = n, and satisfies the recurrence a(n+3) = 5*a(n+2) - 6* a(n+1) + 2*a(n) with a(1) = 1, a(2) = 2, and a(3) = 4.

Original entry on oeis.org

1, 2, 4, 10, 30, 98, 330, 1122, 3826, 13058, 44578, 152194, 519618, 1774082, 6057090, 20680194, 70606594, 241065986, 823050754, 2810071042, 9594182658, 32756588546, 111837988866, 381838778370, 1303679135746, 4451038986242
Offset: 1

Views

Author

Paul D. Hanna, Aug 22 2003

Keywords

Comments

Binomial transform of A001333 (which, with an extra leading 1, is the expansion of (1 - x - 2*x^2)/(1 - 2*x - x^2)). - Paul Barry, Aug 26 2003
Partial sums of the binomial transform of Pell(n-1). - Paul Barry, Apr 24 2004

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-3x)/(1-5x+6x^2-2x^3),{x,0,30}],x] (* or *) LinearRecurrence[{5,-6,2},{1,2,4},30] (* Harvey P. Dale, Oct 12 2015 *)

Formula

G.f.: x*(1 - 3*x)/(1 - 5*x + 6*x^2 - 2*x^3).
a(n) = 2 + 2*A007070(n-3) for n > 2.
a(n) = ((2 - sqrt(2))^(n)/(1 - sqrt(2)) + (2 + sqrt(2))^(n)/(1 + sqrt(2)))/2 + 2 (offset 0) - Paul Barry, Aug 26 2003
a(n+1) - a(n) = A006012(n-1) for n >= 2. - Philippe Deléham, Feb 01 2012
a(1) = 1, a(2) = 2, a(3) = 4, a(n) = 5*a(n-1) - 6*a(n-2) + 2*a(n-3) for n >= 4. - Harvey P. Dale, Oct 12 2015
a(n+1) = Sum_{k=0..n} A100631(n,k) for n >= 0. - Petros Hadjicostas, Feb 09 2021

Extensions

More terms from Paul Barry, Apr 24 2004

A094806 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 5.

Original entry on oeis.org

1, 5, 20, 74, 264, 924, 3200, 11016, 37792, 129392, 442496, 1512224, 5165952, 17643456, 60250112, 205729920, 702452224, 2398414592, 8188884992, 27958972928, 95458646016, 325917686784, 1112755552256, 3799191029760, 12971261403136, 44286680330240
Offset: 2

Views

Author

Herbert Kociemba, Jun 11 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n) counts (s(0), s(1), ..., s(2n)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = j, s(2n) = k.

Programs

  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[(1/4)Sum[ Sin[Pi*k/8]Sin[5Pi*k/8](2Cos[Pi*k/8])^(2n), {k, 1, 7}]]]; Table[ f[n], {n, 2, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
    LinearRecurrence[{6,-10,4},{1,5,20},30] (* Harvey P. Dale, Mar 04 2015 *)

Formula

a(n) = (1/4)*Sum_{k=1..7} sin(Pi*k/8)*sin(5*Pi*k/8)*(2*cos(Pi*k/8))^(2n).
a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3).
G.f.: x^2*(x-1) / ( (2*x-1)*(2*x^2-4*x+1) ).
a(n) = (-2^n+(-(2-sqrt(2))^n+(2+sqrt(2))^n)/sqrt(2))/4. - Colin Barker, Apr 27 2016
4*a(n) = 2*A007070(n-1) - 2^n.- R. J. Mathar, Nov 14 2019

A140071 Triangle read by rows: iterates of X * [1,0,0,0,...]; where X = an infinite lower bidiagonal matrix with [3,1,3,1,3,1...] in the main diagonal and [1,1,1,...] in the subdiagonal.

Original entry on oeis.org

1, 3, 1, 9, 4, 1, 27, 13, 7, 1, 81, 40, 34, 8, 1, 243, 121, 142, 42, 11, 1, 729, 364, 547, 184, 75, 12, 1, 2187, 1093, 2005, 731, 409, 87, 15, 1, 6561, 3280, 7108, 2736, 1958, 496, 132, 16, 1, 19683, 9841, 24604, 9844, 8610, 2454, 892, 148, 19, 1
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, May 04 2008

Keywords

Comments

Companion triangle A140070 uses an analogous operation with the main diagonal [1,3,1,3,1,3,...].

Examples

			First few rows of the triangle are:
1;
3, 1;
9, 4, 1;
27, 13, 7, 1;
81, 40, 34, 8, 1;
243, 121, 142, 42, 11, 1;
729, 364, 547, 184, 75, 12, 1;
2187, 1093, 2005, 731, 409, 87, 15, 1;
6561, 3280, 7108, 2736, 1958, 496, 132, 16, 1;
...
		

Crossrefs

Cf. A140070, A007070 (row sums), A157751.

Formula

From Peter Bala, Jan 17 2014: (Start)
O.g.f. (1 + (x - 1)*z)/(1 - 4*z - (x^2 - 3)*z^2) = 1 + (x + 3)*z + (x^2 + 4*x + 9)*z^2 + ....
Recurrence equation: T(n,k) = 4*T(n-1,k) - 3*T(n-2,k) + T(n-2,k-2).
Recurrence equation for row polynomials: R(n,x) = 4*R(n-1,x) + (x^2 - 3)*R(n-2,x) with R(0,x) = 1 and R(1,x) = 3 + x.
Another recurrence equation: R(n,x) = (x + 2)*R(n-1,x) + R(n-1,-x) with R(0,x) = 1. Cf. A157751. (End)

A209691 Triangle of coefficients of polynomials u(n,x) jointly generated with A209692; see the Formula section.

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 0, 1, 8, 8, 0, 1, 5, 24, 16, 0, 1, 4, 21, 64, 32, 0, 1, 4, 15, 77, 160, 64, 0, 1, 4, 14, 58, 253, 384, 128, 0, 1, 4, 14, 49, 221, 765, 896, 256, 0, 1, 4, 14, 48, 177, 800, 2173, 2048, 512, 0, 1, 4, 14, 48, 165, 654, 2723, 5885, 4608, 1024, 0, 1, 4
Offset: 1

Views

Author

Clark Kimberling, Mar 12 2012

Keywords

Comments

Combinatorial limit of rows: A007070.
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
0...2
0...2...4
0...1...8...8
0...1...5...24...16
First three polynomials v(n,x): 1, 2x, 2x + 4x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A209691 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A209692 *)

Formula

u(n,x)=x*u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A210218 Triangle of coefficients of polynomials v(n,x) jointly generated with A210217; see the Formula section.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 4, 13, 15, 1, 4, 14, 38, 31, 1, 4, 14, 47, 103, 63, 1, 4, 14, 48, 151, 264, 127, 1, 4, 14, 48, 163, 462, 649, 255, 1, 4, 14, 48, 164, 544, 1348, 1546, 511, 1, 4, 14, 48, 164, 559, 1768, 3769, 3595, 1023, 1, 4, 14, 48, 164, 560, 1893, 5564
Offset: 1

Views

Author

Clark Kimberling, Mar 19 2012

Keywords

Comments

Limiting row: A007070
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...3
1...4...7
1...4...13...15
1...4...14...38...31
First three polynomials v(n,x): 1, 1 + 3x , 1 + 4x + 7x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210217 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210218 *)

Formula

u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A210741 Triangle of coefficients of polynomials u(n,x) jointly generated with A210742; see the Formula section.

Original entry on oeis.org

1, 1, 3, 1, 5, 8, 1, 7, 19, 21, 1, 9, 34, 65, 55, 1, 11, 53, 141, 210, 144, 1, 13, 76, 257, 534, 654, 377, 1, 15, 103, 421, 1111, 1905, 1985, 987, 1, 17, 134, 641, 2041, 4447, 6512, 5911, 2584, 1, 19, 169, 925, 3440, 9038, 16837, 21557, 17345, 6765, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 24 2012

Keywords

Comments

Rows end with even-indexed Fibonacci numbers
Row sums: A007070
Alternating row sums: signed powers of 2
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...3
1...5...8
1...7...19...21
1...9...34...65...55
First three polynomials u(n,x): 1, 1+ 3x, 1 + 5x + 8x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]     (* A210741 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]     (* A210742 *)

Formula

u(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A210753 Triangle of coefficients of polynomials u(n,x) jointly generated with A210754; see the Formula section.

Original entry on oeis.org

1, 2, 2, 3, 7, 4, 4, 16, 20, 8, 5, 30, 61, 52, 16, 6, 50, 146, 198, 128, 32, 7, 77, 301, 575, 584, 304, 64, 8, 112, 560, 1408, 1992, 1616, 704, 128, 9, 156, 966, 3060, 5641, 6328, 4272, 1600, 256, 10, 210, 1572, 6084, 14002, 20330, 18880, 10912, 3584
Offset: 1

Views

Author

Clark Kimberling, Mar 25 2012

Keywords

Comments

Row n starts with n and ends with 2^(n-1).
Row sums: A007070
Alternating row sums: 1,0,0,0,0,0,0,0,0,....
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2...2
3...7....4
4...16...20...8
5...30...61...52...16
First three polynomials u(n,x): 1, 2 + 2x, 3 + 7x + 4x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210753 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210754 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}] (* A007070 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}] (* A035344 *)

Formula

u(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A217257 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 7, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,3) = T(0,4) = T(0,5) = T(0,6) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 0, 6, 14, 14, 0, 0, 0, 0, 0, 6, 20, 28, 14, 0, 0, 0, 0, 0, 0, 26, 48, 42, 0, 0, 0, 0, 0, 0, 0, 26, 74, 90, 42, 0, 0, 0, 0, 0, 0, 0, 0, 100, 164, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 264, 296, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364, 560, 428, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 17 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 20, 26, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 48, 74, 100, 100, 0, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 90, 162, 264, 364, 364, 0, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 42, 132, 296, 560, 924, 1288, 1288, 0, 0, 0, ... row n=5
...
		

References

  • E. Lucas, Théorie des nombres, A. Blanchard, Paris, 1958, p.89

Crossrefs

Cf. similar sequences: A216230, A216228, A216226, A216238, A216054.

Formula

T(n,n) = A024175(n).
T(n,n+1) = A024175(n+1).
T(n,n+2) = A094803(n+1).
T(n,n+3) = A007070(n).
T(n,n+4) = A094806(n+2).
T(n,n+5) = T(n,n+6) = A094811(n+2).
Sum_{k, 0<=k<=n} T(n-k,k) = A030436(n).

Extensions

a(69) = 0 deleted by Georg Fischer, Oct 16 2021

A106731 Expansion of -2*x/(1 - 4*x + 2*x^2).

Original entry on oeis.org

0, -2, -8, -28, -96, -328, -1120, -3824, -13056, -44576, -152192, -519616, -1774080, -6057088, -20680192, -70606592, -241065984, -823050752, -2810071040, -9594182656, -32756588544, -111837988864, -381838778368, -1303679135744, -4451038986240, -15196797673472
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Comments

See a Oct 01 2013 comment on A007070 where it is pointed out that this sequence, interspersed with zeros, appears, together with A007070, also interspersed with zeros, in the representation of nonnegative powers of the algebraic number rho(8) = 2*cos(Pi/8) in the power basis of the number field Q(rho(8)) of degree 4, known from the octagon. - Wolfdieter Lang, Oct 02 2013

Crossrefs

Programs

  • Magma
    [n le 2 select -(1+(-1)^n) else 4*Self(n-1) - 2*Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 10 2021
    
  • Maple
    a[0]:=0: a[1]:=-2: for n from 2 to 27 do a[n]:=4*a[n-1]-2*a[n-2] od: seq(a[n], n=0..30);
  • Mathematica
    M= {{0,-2}, {1,4}}; v[1]= {0,1}; v[n_]:= v[n]= M.v[n-1]; Table[Abs[v[n][[1]]], {n, 30}]
    CoefficientList[Series[-2x/(1 -4x +2x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2013 *)
  • Sage
    def a(n): return -2^((n+2)/2)*lucas_number1(n,2,-1) if (n%2==0) else -2^((n-1)/2)*lucas_number2(n,2,-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Sep 10 2021

Formula

G.f.: -2*x/(1-4*x+2*x^2).
a(n) = -2*A007070(n-1) for n>=1.
a(n) = 4*a(n-1) - 2*a(n-2); a(0)=0, a(1)=-2.
From G. C. Greubel, Sep 10 2021: (Start)
a(2*n) = -2^(n+1)*Pell(2*n) = -2^(n+1)*A000129(2*n).
a(2*n+1) = -2^n*Q(2n+1) = -2^n*A002203(2*n+1). (End)
E.g.f.: -sqrt(2)*exp(2*x)*sinh(sqrt(2)*x). - Stefano Spezia, May 20 2024

Extensions

Edited by N. J. A. Sloane, Apr 30 2006
Further editing and simpler name, Joerg Arndt, Oct 02 2013

A111955 a(n) = A078343(n) + (-1)^n.

Original entry on oeis.org

0, 1, 4, 7, 20, 45, 112, 267, 648, 1561, 3772, 9103, 21980, 53061, 128104, 309267, 746640, 1802545, 4351732, 10506007, 25363748, 61233501, 147830752, 356895003, 861620760, 2080136521, 5021893804, 12123924127, 29269742060, 70663408245
Offset: 0

Views

Author

Creighton Dement, Aug 25 2005

Keywords

Comments

This sequence is a companion sequence to A111954 (compare formula / program code). Three other companion sequences (i.e., they are generated by the same floretion given in the program code) are A105635, A097076 and A100828.
Floretion Algebra Multiplication Program, FAMP Code: 4kbasejseq[J*D] with J = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and D = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e. (an initial term 0 was added to the sequence)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,1},{0,1,4},40] (* Harvey P. Dale, Mar 12 2015 *)

Formula

a(n) + a(n+1) = A048655(n).
a(n) = a(n-1) + 3*a(n-2) + a(n-3), n >= 3; a(n) = (-1/4*sqrt(2)+1)*(1-sqrt(2))^n + (1/4*sqrt(2)+1)*(1+sqrt(2))^n - (-1)^n;
G.f.: -x*(1+3*x) / ( (1+x)*(x^2+2*x-1) ). - R. J. Mathar, Oct 02 2012
E.g.f.: cosh(x) - exp(x)*cosh(sqrt(2)*x) - sinh(x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, May 26 2024
Previous Showing 41-50 of 72 results. Next