A087161
Records in A087159, i.e., A087159(a(n)) = n, and satisfies the recurrence a(n+3) = 5*a(n+2) - 6* a(n+1) + 2*a(n) with a(1) = 1, a(2) = 2, and a(3) = 4.
Original entry on oeis.org
1, 2, 4, 10, 30, 98, 330, 1122, 3826, 13058, 44578, 152194, 519618, 1774082, 6057090, 20680194, 70606594, 241065986, 823050754, 2810071042, 9594182658, 32756588546, 111837988866, 381838778370, 1303679135746, 4451038986242
Offset: 1
-
CoefficientList[Series[(1-3x)/(1-5x+6x^2-2x^3),{x,0,30}],x] (* or *) LinearRecurrence[{5,-6,2},{1,2,4},30] (* Harvey P. Dale, Oct 12 2015 *)
A094806
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 5.
Original entry on oeis.org
1, 5, 20, 74, 264, 924, 3200, 11016, 37792, 129392, 442496, 1512224, 5165952, 17643456, 60250112, 205729920, 702452224, 2398414592, 8188884992, 27958972928, 95458646016, 325917686784, 1112755552256, 3799191029760, 12971261403136, 44286680330240
Offset: 2
-
f[n_] := FullSimplify[ TrigToExp[(1/4)Sum[ Sin[Pi*k/8]Sin[5Pi*k/8](2Cos[Pi*k/8])^(2n), {k, 1, 7}]]]; Table[ f[n], {n, 2, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
LinearRecurrence[{6,-10,4},{1,5,20},30] (* Harvey P. Dale, Mar 04 2015 *)
A140071
Triangle read by rows: iterates of X * [1,0,0,0,...]; where X = an infinite lower bidiagonal matrix with [3,1,3,1,3,1...] in the main diagonal and [1,1,1,...] in the subdiagonal.
Original entry on oeis.org
1, 3, 1, 9, 4, 1, 27, 13, 7, 1, 81, 40, 34, 8, 1, 243, 121, 142, 42, 11, 1, 729, 364, 547, 184, 75, 12, 1, 2187, 1093, 2005, 731, 409, 87, 15, 1, 6561, 3280, 7108, 2736, 1958, 496, 132, 16, 1, 19683, 9841, 24604, 9844, 8610, 2454, 892, 148, 19, 1
Offset: 1
First few rows of the triangle are:
1;
3, 1;
9, 4, 1;
27, 13, 7, 1;
81, 40, 34, 8, 1;
243, 121, 142, 42, 11, 1;
729, 364, 547, 184, 75, 12, 1;
2187, 1093, 2005, 731, 409, 87, 15, 1;
6561, 3280, 7108, 2736, 1958, 496, 132, 16, 1;
...
A209691
Triangle of coefficients of polynomials u(n,x) jointly generated with A209692; see the Formula section.
Original entry on oeis.org
1, 0, 2, 0, 2, 4, 0, 1, 8, 8, 0, 1, 5, 24, 16, 0, 1, 4, 21, 64, 32, 0, 1, 4, 15, 77, 160, 64, 0, 1, 4, 14, 58, 253, 384, 128, 0, 1, 4, 14, 49, 221, 765, 896, 256, 0, 1, 4, 14, 48, 177, 800, 2173, 2048, 512, 0, 1, 4, 14, 48, 165, 654, 2723, 5885, 4608, 1024, 0, 1, 4
Offset: 1
First five rows:
1
0...2
0...2...4
0...1...8...8
0...1...5...24...16
First three polynomials v(n,x): 1, 2x, 2x + 4x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209691 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209692 *)
A210218
Triangle of coefficients of polynomials v(n,x) jointly generated with A210217; see the Formula section.
Original entry on oeis.org
1, 1, 3, 1, 4, 7, 1, 4, 13, 15, 1, 4, 14, 38, 31, 1, 4, 14, 47, 103, 63, 1, 4, 14, 48, 151, 264, 127, 1, 4, 14, 48, 163, 462, 649, 255, 1, 4, 14, 48, 164, 544, 1348, 1546, 511, 1, 4, 14, 48, 164, 559, 1768, 3769, 3595, 1023, 1, 4, 14, 48, 164, 560, 1893, 5564
Offset: 1
First five rows:
1
1...3
1...4...7
1...4...13...15
1...4...14...38...31
First three polynomials v(n,x): 1, 1 + 3x , 1 + 4x + 7x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210217 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210218 *)
A210741
Triangle of coefficients of polynomials u(n,x) jointly generated with A210742; see the Formula section.
Original entry on oeis.org
1, 1, 3, 1, 5, 8, 1, 7, 19, 21, 1, 9, 34, 65, 55, 1, 11, 53, 141, 210, 144, 1, 13, 76, 257, 534, 654, 377, 1, 15, 103, 421, 1111, 1905, 1985, 987, 1, 17, 134, 641, 2041, 4447, 6512, 5911, 2584, 1, 19, 169, 925, 3440, 9038, 16837, 21557, 17345, 6765, 1
Offset: 1
First five rows:
1
1...3
1...5...8
1...7...19...21
1...9...34...65...55
First three polynomials u(n,x): 1, 1+ 3x, 1 + 5x + 8x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210741 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210742 *)
A210753
Triangle of coefficients of polynomials u(n,x) jointly generated with A210754; see the Formula section.
Original entry on oeis.org
1, 2, 2, 3, 7, 4, 4, 16, 20, 8, 5, 30, 61, 52, 16, 6, 50, 146, 198, 128, 32, 7, 77, 301, 575, 584, 304, 64, 8, 112, 560, 1408, 1992, 1616, 704, 128, 9, 156, 966, 3060, 5641, 6328, 4272, 1600, 256, 10, 210, 1572, 6084, 14002, 20330, 18880, 10912, 3584
Offset: 1
First five rows:
1
2...2
3...7....4
4...16...20...8
5...30...61...52...16
First three polynomials u(n,x): 1, 2 + 2x, 3 + 7x + 4x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210753 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210754 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A007070 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A035344 *)
A217257
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 7, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,3) = T(0,4) = T(0,5) = T(0,6) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 0, 6, 14, 14, 0, 0, 0, 0, 0, 6, 20, 28, 14, 0, 0, 0, 0, 0, 0, 26, 48, 42, 0, 0, 0, 0, 0, 0, 0, 26, 74, 90, 42, 0, 0, 0, 0, 0, 0, 0, 0, 100, 164, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 264, 296, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364, 560, 428, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 20, 26, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 48, 74, 100, 100, 0, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 90, 162, 264, 364, 364, 0, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 42, 132, 296, 560, 924, 1288, 1288, 0, 0, 0, ... row n=5
...
- E. Lucas, Théorie des nombres, A. Blanchard, Paris, 1958, p.89
A106731
Expansion of -2*x/(1 - 4*x + 2*x^2).
Original entry on oeis.org
0, -2, -8, -28, -96, -328, -1120, -3824, -13056, -44576, -152192, -519616, -1774080, -6057088, -20680192, -70606592, -241065984, -823050752, -2810071040, -9594182656, -32756588544, -111837988864, -381838778368, -1303679135744, -4451038986240, -15196797673472
Offset: 0
-
[n le 2 select -(1+(-1)^n) else 4*Self(n-1) - 2*Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 10 2021
-
a[0]:=0: a[1]:=-2: for n from 2 to 27 do a[n]:=4*a[n-1]-2*a[n-2] od: seq(a[n], n=0..30);
-
M= {{0,-2}, {1,4}}; v[1]= {0,1}; v[n_]:= v[n]= M.v[n-1]; Table[Abs[v[n][[1]]], {n, 30}]
CoefficientList[Series[-2x/(1 -4x +2x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2013 *)
-
def a(n): return -2^((n+2)/2)*lucas_number1(n,2,-1) if (n%2==0) else -2^((n-1)/2)*lucas_number2(n,2,-1)
[a(n) for n in (0..30)] # G. C. Greubel, Sep 10 2021
Further editing and simpler name,
Joerg Arndt, Oct 02 2013
Original entry on oeis.org
0, 1, 4, 7, 20, 45, 112, 267, 648, 1561, 3772, 9103, 21980, 53061, 128104, 309267, 746640, 1802545, 4351732, 10506007, 25363748, 61233501, 147830752, 356895003, 861620760, 2080136521, 5021893804, 12123924127, 29269742060, 70663408245
Offset: 0
Cf.
A078343,
A000129,
A001333,
A111954,
A111956,
A007070,
A077995,
A100828,
A097076,
A105635,
A048655.
-
LinearRecurrence[{1,3,1},{0,1,4},40] (* Harvey P. Dale, Mar 12 2015 *)
Comments