cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 354 results. Next

A060236 If n mod 3 = 0 then a(n) = a(n/3), otherwise a(n) = n mod 3.

Original entry on oeis.org

1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Henry Bottomley, Mar 21 2001

Keywords

Comments

A cubefree word. Start with 1, apply the morphisms 1 -> 121, 2 -> 122, take limit. See A080846 for another version.
Ultimate modulo 3: n-th digit of terms in "Ana sequence" (see A060032 for definition).
Equals A005148(n) reduced mod 3. In "On a sequence Arising in Series for Pi" Morris Newman and Daniel Shanks conjectured that 3 never divides A005148(n) and D. Zagier proved it. - Benoit Cloitre, Jun 22 2002
Also equals A038502(n) mod 3.
Last nonzero digit in ternary representation of n. - Franklin T. Adams-Watters, Apr 01 2006
a(2*n) = length of n-th run of twos. - Reinhard Zumkeller, Mar 13 2015

Examples

			a(10)=1 since 10=3^0*10 and 10 mod 3=1;
a(72)=2 since 24=3^3*8 and 8 mod 3=2.
		

Crossrefs

Cf. A026225 (indices of 1's), A026179 (indices of 2's).
Cf. A060032 (concatenate 3^n terms).

Programs

  • Haskell
    following Franklin T. Adams-Watters's comment.
    a060236 = head . dropWhile (== 0) . a030341_row
    -- Reinhard Zumkeller, Mar 13 2015
    
  • Magma
    [(Floor(n/3^Valuation(n, 3)) mod 3): n in [1..120]]; // G. C. Greubel, Nov 05 2024
    
  • Mathematica
    Nest[ Flatten[ # /. {1 -> {1, 2, 1}, 2 -> {1, 2, 2}}] &, {1}, 5] (* Robert G. Wilson v, Mar 04 2005 *)
    Table[Mod[n/3^IntegerExponent[n, 3], 3], {n, 1, 120}] (* Clark Kimberling, Oct 19 2016 *)
    lnzd[m_]:=Module[{s=Split[m]},If[FreeQ[Last[s],0],s[[-1,1]],s[[-2,1]]]]; lnzd/@Table[IntegerDigits[n,3],{n,120}] (* Harvey P. Dale, Oct 19 2018 *)
  • PARI
    a(n)=if(n<1, 0, n/3^valuation(n,3)%3) /* Michael Somos, Nov 10 2005 */
    
  • SageMath
    [n/3^valuation(n, 3)%3 for n in range(1,121)] # G. C. Greubel, Nov 05 2024

Formula

a(3*n) = a(n), a(3*n + 1) = 1, a(3*n + 2) = 2. - Michael Somos, Jul 29 2009
a(n) = 1 + A080846(n). - Joerg Arndt, Jan 21 2013

A132141 Numbers whose ternary representation begins with 1.

Original entry on oeis.org

1, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2007

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/2 and 3/4, respectively. - Amiram Eldar, Feb 28 2021

Crossrefs

Programs

  • Haskell
    a132141 n = a132141_list !! (n-1)
    a132141_list = filter ((== 1) . until (< 3) (flip div 3)) [1..]
    -- Reinhard Zumkeller, Feb 06 2015
  • Mathematica
    Flatten[(Range[3^#,2 3^#-1])&/@Range[0,4]] (* Zak Seidov, Mar 03 2009 *)
  • PARI
    s=[];for(n=0,4,for(x=3^n,2*3^n-1,s=concat(s,x)));s \\ Zak Seidov, Mar 03 2009
    
  • PARI
    a(n) = n + 3^logint(n<<1,3) >> 1; \\ Kevin Ryde, Feb 19 2022
    

Formula

A number n is a term iff 3^m <= n < 2*3^m -1, for m=0,1,2,... - Zak Seidov, Mar 03 2009
a(n) = n + (3^floor(log_3(2*n)) - 1)/2. - Kevin Ryde, Feb 19 2022

A048787 Write n in base 3 then rotate left one place.

Original entry on oeis.org

1, 2, 1, 4, 7, 2, 5, 8, 1, 4, 7, 10, 13, 16, 19, 22, 25, 2, 5, 8, 11, 14, 17, 20, 23, 26, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68
Offset: 1

Views

Author

John W. Layman and Anthony C. Hill (hilla(AT)hotmail.com)

Keywords

Comments

A={a(n)} is self-similar in the sense that the subsequence remaining after deleting the first occurrence of each integer is identical to the original sequence A (Kimberling's "upper-trimming" operation).

Examples

			a(33)=19 since 33 = 1020(base 3) -> 0201(base 3) = 19.
		

Crossrefs

Programs

A060109 Numbers in Morse code, with 1 for a dot, 2 for a dash and 0 between digits/letters.

Original entry on oeis.org

22222, 12222, 11222, 11122, 11112, 11111, 21111, 22111, 22211, 22221, 12222022222, 12222012222, 12222011222, 12222011122, 12222011112, 12222011111, 12222021111, 12222022111, 12222022211, 12222022221, 11222022222, 11222012222, 11222011222, 11222011122, 11222011112, 11222011111
Offset: 0

Views

Author

Henry Bottomley, Feb 28 2001

Keywords

Examples

			a(10) = 12222022222 since 1 is ".----" and 0 is "-----".
		

Crossrefs

Cf. A059852 (Morse code for letters), A008777 (number of dots and dashes).
Cf. A060110 (these base-3 numbers converted to decimal), A321332 (duration of the code for n).

Programs

  • Haskell
    import Data.List (inits, tails)
    a060109 n = if n == 0 then 22222 else read (conv n) :: Integer where
       conv 0 = []
       conv x = conv x' ++ mCode !! d where (x', d) = divMod x 10
       mCode = map ('0' :) (mc ++ (reverse $ init $ tail $ map reverse mc))
       mc = zipWith (++) (inits "111111") (tails "22222")
    -- Reinhard Zumkeller, Feb 20 2015
    
  • Mathematica
    With[{a = Association@ Array[# -> If[# < 6, PadRight[ConstantArray[1, #], 5, 2], PadRight[ConstantArray[2, # - 5], 5, 1]] &, 10, 0]}, Array[FromDigits@ Flatten@ Riffle[Map[Lookup[a, #] &, IntegerDigits[#]], 0] &, 25]] (* Michael De Vlieger, Nov 02 2020 *)
  • PARI
    apply( {A060109(n)=if(n>9,self()(n\10)*10^6)+fromdigits([1+(abs(k-n%10)>2)|k<-[3..7]])}, [0..39]) \\ M. F. Hasler, Jun 22 2020

Formula

a(n) A007089(A060110(n)) = a(floor(n/10))*10^6 + a(n%10) for n > 9 and a(n) = 33333 - a(n-5) for n%10 > 4, where % is the modulo (remainder) operator. - M. F. Hasler, Jun 22 2020

A073785 Numbers in base -3.

Original entry on oeis.org

0, 1, 2, 120, 121, 122, 110, 111, 112, 100, 101, 102, 220, 221, 222, 210, 211, 212, 200, 201, 202, 12020, 12021, 12022, 12010, 12011, 12012, 12000, 12001, 12002, 12120, 12121, 12122, 12110, 12111, 12112, 12100, 12101, 12102, 12220, 12221, 12222
Offset: 0

Views

Author

Robert G. Wilson v, Aug 11 2002

Keywords

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

Crossrefs

Cf. A007089.
Nonnegative numbers in negative bases: A039723 (b=-10), A039724 (b=-2), this sequence (b=-3), A007608 (b=-4), A073786 (b=-5), A073787 (b=-6), A073788 (b=-7), A073789 (b=-8), A073790 (b=-9).
Cf. A320636 (negative numbers in base -3).

Programs

  • Haskell
    a073785 0 = 0
    a073785 n = a073785 n' * 10 + m where
       (n', m) = if r < 0 then (q + 1, r + 3) else (q, r)
                 where (q, r) = quotRem n (negate 3)
    -- Reinhard Zumkeller, Jul 07 2012
    
  • Mathematica
    ToNegaBases[i_Integer, b_Integer] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[(#1 - Mod[ #1, b])/-b &, i, #1 != 0 &], b]]]]; Table[ ToNegaBases[n, 3], {n, 0, 45}]
  • PARI
    A073785 = base(n, b=-3) = if(n, base(n\b, b)*10 + n%b, 0) \\ Jianing Song, Oct 20 2018
  • Python
    def A073785(n):
        s, q = '', n
        while q >= 3 or q < 0:
            q, r = divmod(q, -3)
            if r < 0:
                q += 1
                r += 3
            s += str(r)
        return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016
    

A081606 Numbers having at least one 1 in their ternary representation.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2003

Keywords

Comments

Complement of A005823.
Integers m such that central Delannoy number A001850(m) == 0 (mod 3). - Emeric Deutsch and Bruce E. Sagan, Dec 04 2003
Integers m such that A026375(m) == 0 (mod 3). - Fabio Visonà, Aug 03 2023

Crossrefs

Programs

  • Mathematica
    Select[Range[100],DigitCount[#,3,1]>0&] (* Harvey P. Dale, Nov 26 2022 *)
  • Python
    from itertools import count, islice
    def A081606_gen(): # generator of terms
        a = 0
        for n in count(1):
            b = int(bin(n)[2:],3)<<1
            yield from range(a+1,b)
            a = b
    A081606_list = list(islice(A081606_gen(),30)) # Chai Wah Wu, Oct 13 2023
    
  • Python
    from gmpy2 import digits
    def A081606(n):
        def f(x):
            s = digits(x>>1,3)
            for i in range(l:=len(s)):
                if s[i]>'1':
                    break
            else:
                return n+int(s,2)
            return n-1+(int(s[:i] or '0',2)+1<Chai Wah Wu, Oct 29 2024

Extensions

More terms from Emeric Deutsch and Bruce E. Sagan, Dec 04 2003

A163327 Self-inverse permutation of integers: swap the odd- and even-positioned digits in the ternary expansion of n, then convert back to decimal.

Original entry on oeis.org

0, 3, 6, 1, 4, 7, 2, 5, 8, 27, 30, 33, 28, 31, 34, 29, 32, 35, 54, 57, 60, 55, 58, 61, 56, 59, 62, 9, 12, 15, 10, 13, 16, 11, 14, 17, 36, 39, 42, 37, 40, 43, 38, 41, 44, 63, 66, 69, 64, 67, 70, 65, 68, 71, 18, 21, 24, 19, 22, 25, 20, 23, 26, 45, 48, 51, 46, 49, 52, 47, 50, 53
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Examples

			11 in ternary base (A007089) is written as '(000...)102' (... + 0*27 + 1*9 + 0*3 + 2), which results '1020' = 1*27 + 0*9 + 2*3 + 0 = 33, when the odd- and even-positioned digits are swapped, thus a(11) = 33.
		

Crossrefs

Programs

  • Python
    from sympy.ntheory import digits
    def a(n):
        d = digits(n, 3)[1:]
        return sum(3**(i+(1-2*(i&1)))*di for i, di in enumerate(d[::-1]))
    print([a(n) for n in range(72)]) # Michael S. Branicky, Aug 05 2022
  • Scheme
    (define (A163327 n) (+ (A037314 (A163326 n)) (* 3 (A037314 (A163325 n)))))
    

Formula

a(n) = A037314(A163326(n)) + 3*A037314(A163325(n))

Extensions

Edited by Charles R Greathouse IV, Nov 01 2009

A325820 Multiplication table for carryless product i X j in base 3 for i >= 0 and j >= 0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 1, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 7, 12, 12, 7, 6, 0, 0, 7, 3, 15, 16, 15, 3, 7, 0, 0, 8, 5, 18, 11, 11, 18, 5, 8, 0, 0, 9, 4, 21, 24, 13, 24, 21, 4, 9, 0, 0, 10, 18, 24, 19, 21, 21, 19, 24, 18, 10, 0, 0, 11, 20, 27, 23, 26, 9, 26, 23, 27, 20, 11, 0, 0, 12, 19, 30, 36, 19, 15, 15, 19, 36, 30, 19, 12, 0
Offset: 0

Views

Author

Antti Karttunen, May 22 2019

Keywords

Examples

			The array begins as:
  0,  0,  0,  0,  0,  0,  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12, ...
  0,  2,  1,  6,  8,  7,  3,  5,  4,  18,  20,  19,  24, ...
  0,  3,  6,  9, 12, 15, 18, 21, 24,  27,  30,  33,  36, ...
  0,  4,  8, 12, 16, 11, 24, 19, 23,  36,  40,  44,  48, ...
  0,  5,  7, 15, 11, 13, 21, 26, 19,  45,  50,  52,  33, ...
  0,  6,  3, 18, 24, 21,  9, 15, 12,  54,  60,  57,  72, ...
  0,  7,  5, 21, 19, 26, 15, 13, 11,  63,  70,  68,  57, ...
  0,  8,  4, 24, 23, 19, 12, 11, 16,  72,  80,  76,  69, ...
  0,  9, 18, 27, 36, 45, 54, 63, 72,  81,  90,  99, 108, ...
  0, 10, 20, 30, 40, 50, 60, 70, 80,  90, 100,  83, 120, ...
  0, 11, 19, 33, 44, 52, 57, 68, 76,  99,  83,  91, 132, ...
  0, 12, 24, 36, 48, 33, 72, 57, 69, 108, 120, 132, 144, ...
  etc.
A(2,2) = 2*2 mod 3 = 1.
		

Crossrefs

Cf. A169999 (the main diagonal).
Row/Column 0: A000004, Row/Column 1: A001477, Row/Column 2: A004488, Row/Column 3: A008585, Row/Column 4: A242399, Row/Column 9: A008591.
Cf. A325821 (same table without the zero row and column).
Cf. A048720 (binary), A059692 (decimal), A004247 (full multiply).

Programs

  • PARI
    up_to = 105;
    A325820sq(b, c) = fromdigits(Vec(Pol(digits(b,3))*Pol(digits(c,3)))%3, 3);
    A325820list(up_to) = { my(v = vector(up_to), i=0); for(a=0,oo, for(col=0,a, if(i++ > up_to, return(v)); v[i] = A325820sq(a-col,col))); (v); };
    v325820 = A325820list(up_to);
    A325820(n) = v325820[1+n];

A020915 Number of digits in base-3 representation of 2^n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 47
Offset: 0

Views

Author

Keywords

Comments

For n > 0, first differences of A022331. - Michel Marcus, Oct 03 2013

Crossrefs

Cf. A022924 (first differences).

Programs

Formula

a(n) = 1 + floor(n*log_3(2)) = 1 + floor(n*A102525) = 1 + A136409(n). - R. J. Mathar, May 23 2009
a(n) = A081604(A000079(n)). - Reinhard Zumkeller, Jul 12 2011
a(A020914(n)) = n + 1. - Reinhard Zumkeller, Mar 28 2015

Extensions

More terms from James Sellers

A291770 A binary encoding of the zeros in ternary representation of n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 7, 6, 6, 5, 4, 4, 5, 4, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 7, 6, 6, 5, 4, 4, 5, 4, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 15, 14, 14, 13, 12, 12, 13, 12, 12, 11, 10, 10, 9, 8, 8, 9, 8, 8, 11, 10, 10, 9, 8, 8, 9, 8, 8, 7, 6, 6
Offset: 1

Views

Author

Antti Karttunen, Sep 11 2017

Keywords

Comments

The ones in the binary representation of a(n) correspond to the nonleading zeros in the ternary representation of n. For example: ternary(33) = 1020 and binary(a(33)) = 101 (a(33) = 5).

Examples

			   n      a(n)    ternary(n)  binary(a(n))
                  A007089(n)  A007088(a(n))
  --      ----    ----------  ------------
   1        0            1           0
   2        0            2           0
   3        1           10           1
   4        0           11           0
   5        0           12           0
   6        1           20           1
   7        0           21           0
   8        0           22           0
   9        3          100          11
  10        2          101          10
  11        2          102          10
  12        1          110           1
  13        0          111           0
  14        0          112           0
  15        1          120           1
  16        0          121           0
  17        0          122           0
  18        3          200          11
  19        2          201          10
  20        2          202          10
  21        1          210           1
  22        0          211           0
  23        0          212           0
  24        1          220           1
  25        0          221           0
  26        0          222           0
  27        7         1000         111
  28        6         1001         110
  29        6         1002         110
  30        5         1010         101
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[IntegerDigits[n, 3] /. k_ /; k < 3 :> If[k == 0, 1, 0], 2], {n, 110}] (* Michael De Vlieger, Sep 11 2017 *)
  • Python
    from sympy.ntheory.factor_ import digits
    def a(n):
        k=digits(n, 3)[1:]
        return int("".join('1' if i==0 else '0' for i in k), 2)
    print([a(n) for n in range(1, 111)]) # Indranil Ghosh, Sep 21 2017
  • Scheme
    (define (A291770 n) (if (zero? n) n (let loop ((n n) (b 1) (s 0)) (if (< n 3) s (let ((d (modulo n 3))) (if (zero? d) (loop (/ n 3) (+ b b) (+ s b)) (loop (/ (- n d) 3) (+ b b) s)))))))
    

Formula

For all n >= 0, a(A000244(n)) = A000225(n), that is, a(3^n) = (2^n) - 1. [The records in the sequence].
For all n >= 1, A000120(a(n)) = A077267(n).
For all n >= 1, A278222(a(n)) = A291771(n).
Previous Showing 41-50 of 354 results. Next